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Gaussian kinetic model for granular gases

James W. Dufty and Aparna Baskaran
Department of Physics, University of Florida, Gainesville, Florida 32611, USA

Lorena Zogaib
Departamento de Matematicas, Instituto Tecnolégico Auténomo de México, México D.F., Mexico
(Received 30 December 2003; published 4 May 2004

A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the
properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a
universal “homogeneous cooling solution” after a few collisions. The homogeneous cooling saH@Bnis
studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann
equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large
velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in
excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a
velocity independent collision frequency and the resulting HCS and transport coefficients are compared to
known results for the Maxwell model. The potential of the model for the study of more complex spatially
inhomogeneous states is discussed.
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I. INTRODUCTION model is chosen for simplicity and tractability. The objective

Many features of granular gases are captured by an ideaiere is to recall one of the first kinetic models proposed for

ized system of smooth, hard spheres with inelastic collisiongranular gases, the Brey-Moreno-Dut§MD) model[13],
[1,2]. During the past decade considerable attention has beéi!d 10 generalize it for both a qualitative and a quantitative
given to this simple system to understand better the mech4€presentation qf the Boltzmann equation. It_ will be referred
nisms behind observed qualitative differences between redf @S the Gaussian model for reasons that will become appar-
gases and those comprised of grains. Among the most pr&nt

ductive theoretical tools for analysis used is that of kineticamljnathelié?jnfowt'ﬁg ssi;culgr;tsctzsegi?isg%% n;?}gglu'sss?ggegn d
theory [3], and more specifically at low density, the Boltz- PP P g

. s weak spatial perturbations of those states. The motivation for
mann equatiori4,5]. In recent years important conceptual

: h as th licability of fluid d ical r this work is to provide a tool for a subsequent more detailed
ISSUES, such as the applicabriity ol fiuid dynamical €qualionSey, 4y, of spatially inhomogeneous states. For example, recent
have been clarified and quantitative methods have been d

e ) fasults suggest that the spectrum of the linearized collision
veloped for accurate predictions over a wide range of experigperator for a realistic kinetic model could shed important

mental conditions. It is fair to say that the Boltzmann kinetic|ignht on the validity conditions for a hydrodynamic descrip-
theory is now the primary theoretical method for a quantitation [14,15. Also, a more practical means to describe bound-
tive description of granular gases. ary value problems is desired for a more faithful comparison
While there are accurate and efficient numerical algowith experiments. Attention is focused here on spatially ho-
rithms for solving the Boltzmann equatid6], analytic ap- mogeneous states for an isolated system and on transport
proximations are more limited and exact solutions nonexisteoefficients for small spatial perturbations, as a means to
ent. Such analytic results are of considerable interest becausempare and contrast models. A more detailed application to
they complement numerical solutions with a more penetratinhomogeneous states and shear flow will be presented else-
ing explication of the dominant mechanisms involved in awhere.
specific application. The mathematical complexity of the There is extensive current interest in related Maxwell
Boltzmann collision operator is the limiting factor in making models. Several exact results have been obtained recently for
progress, so simpler “kinetic models” have been proposethe homogeneous state of an isolated system using these
[7]. This approach has been used with great success for realodels[16]. In some mathematical respects the Maxwell
gases with elastic collisions where several exact solutions fanodels are closer to the hard sphere Boltzmann collision
from equilibrium have been obtained and shown to be imoperator than the model studied here. However, its predic-
semiquantitative agreement with the numerical simulationgions (e.g., homogeneous cooling state distribution, transport
of the Boltzmann equatiofB,9]. Recent applications of ki- coefficient$ are quite different from those of the Boltzmann
netic models to granular gases have yielded similar interesequation as recounted below. In contrast, the Gaussian model
ing exact result$10-12. The collision operator for a kinetic is structurally simpler but with the capacity to give a better
model is constrained to preserve the most important exaaepresentation of known results for the Boltzmann equation.
properties of the Boltzmann collision operator, such as a spe- The basic results known for the hard sphere Boltzmann
cial homogeneous solution and the macroscopic balancequation are summarized in the following section. The ideas
equations for mass, momentum, and energy. Otherwise, thaf kinetic modeling and some existing models are reviewed
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briefly in Sec. Ill, and the Gaussian model is defined in Sec. J(r v|f(t)) = - v(r,t,v)f(r,v,t)
IV. It is an extension and synthesis of two earlier models, the

ellipsoidal statisticalES) model [17] introduced for gases +delf doK (5 - g")a H(r v/ 1) F(r, VLD,
with elastic collisions to yield the correct Prandtl number,
and the BMD model noted above for inelastic collisions. The 2)

model is constructed to describe both elastic and inelastic

collisions, retain a realistic velocity dependent collision fre-whereV =v—u andu is the average flow velocity defined by

quency, and to yield the correct Prandtl number for accurat&d. (7) below. The first term on the right side represents the

transport coefficients. loss of particles with velocity at a rate due to the collision
Also in Sec. IV, the exact solution to the Gaussian modefrequency(r,V,t),

is obtained for an arbitrary initial homogeneous state. It is

shown that this c_Iass of sqlutions approa_ches a universal ho- w(r V1) :J dVlf doK (5 - g)f(r,vy,t). (3)

mogeneous cooling solutiofHCS) on a time scale of the

order of several collisions. Hence the HCS is the special sta h dt f Eq2 ts th in of particl

for homogeneous granular gases analogous to the Maxwell- e second term of Eq2) represents the gain of particles

H H ’ ! “ H H ” H™H
ian for normal gases. The properties of the HCS distributionWlth velacity v, where{v’ v} are the “restifuting” velocities

are shown to be similar to those for the Boltzmann equatiorﬁhat. Igad to{v,v,} following a smooth, inelastic hard sphere
at both small and large velocities. In particular, similar ex-0llision:

ponential decay occurs at large velocities. The special case ofv,
a velocity independent collision frequency is studied as well.

In that case the HCS is the same as that for the BMD model. (4)
The Maxwell models also have a velocity independent colli-
sion frequency. In this special case the Gaussian model HC

has properties quite similar to those of the Maxwell modelso<as1' describing the fractional change in the normal

including algebraic decay for I:?\rge velocities. . _component of the relative velocityr-g’ =—ao-g) and hence

The Chapman-Enskog solution to the Boltzmann equatlortlhe inelasticity of collisionga=1 corresponds to elastic col-
for small spatial variations around the local HCS applies forlisions) The {emelK(A_ )‘g 0 ortignal o the flux of
the models as well. To Navier-Stokes order this solution is ' o9 prop

characterized by three transport coefficients. These transpc}?t"‘rt'des times the differential cross section and is given by

coefficients are compared for the various models and the ~ N A NA

Boltzmann equation in Sec. V. The Gaussian model with K(G:9=0"0(5-9)(79), ®

velocity dependent collision frequency provides an excellentvhere® is the Heaviside step function.

representation of the hard sphere Boltzmann results, over a The most important properties of the collision operator

wide range of inelasticity. are those that result from the microscopic balance equations
The HCS is the reference state for linear hydrodynamicsfor mass, momentum, and energy in a two-particle collision.

Consequently, knowledge of the exact form of this distribu-For the collision ruleg4) it follows directly thatJ has the

tion function from the kinetic models provides some addi-following exact properties:

tional insight there as well. This is illustrated in Sec. VI

=v-3(1+a™) (G905, vi=vi+i(l+a ) (-0)d.

ere,o is a unit vector along the line of their centers, and
=v-v,;. The parameter is the coefficient of restitution,

where the velocity dependence of the hydrodynamic modes 1 0

[15,14 is calculated. The relationship of these modes to the v

fluxes in Green-Kubo expressions for transport coefficients is dv J(r,v[f(D) = 3 , (6
also noted. Finally, the results presented here are summarized Em(v -u)? - EnTg

in the last section and some other interesting applications of

the kinetic model are suggested. wherem is the massn is the density,T is the temperature,

andu is the macroscopic flow velocity:
Il. HARD SPHERE BOLTZMANN EQUATION

n(r,t) 1
The system considered is composedNfsmooth hard n(r,t)u(r,t) v
spheres of diameter in a large volumeV. If the density is 3 =] av f(rv,. (7)
sufficiently small,No®/V<1, the one-particle distribution En(r,t)T(r,t) Em(v—u)2

function f(r,v,t) for the number of particles with positian

and velocityv at timet is determined from the Boltzmann The two zeros on the right side of E¢6) correspond to
equation4,9] conservation of mass and momentum. The last term results
from nonconservation of energy and implies the cooling

d equation for homogeneous states:
(E v V)f(r,v,t) = J(r VE(D). @ g
T 9T=-¢, (8)
The Boltzmann collision operatarhas the form where( is the “cooling rate,”
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5\"57
16 °

It is easy to verify from Eq(6) that there is no spatially The constangg arises in the large velocity limit of the col-
homogeneous steady state for the isolated system, in contrdgiion frequency,
to gases with elastic collisions. Instead, there exists a special
solution, the HCS, which is assumed to be approached in a XN v(v,t) *
P e - v (V)= — By (17
few collision times by all homogeneous initial conditions. It vo(t)

has a scaling property such that the dependence on time oc: - . . .
curs only through the temperature: ‘f‘hus the origin of the exponential decay is the asymptotic

velocity dependence of the collision frequency. The over-
3 x . _ I e population in the tail of the distribution, relative to the

ficsv.D =Nug (v ), v =vlvolt), 0o =V2TM/M. 3 sian at small velocities, also has been confirmed for

(100  v*=2 for all @ by Monte Carlo simulatiof22,20. These
and the transport properties of Sec. V are the primary results

In the following ve(t) will be referred to as the thermal ve- known for the Boltzmann equation with inelastic collisions.

locity in analogy to a gas with elastic collisions. SubstitutionThey are the main features captured by the kinetic model

of Eq. (10) into the Boltzmann equation leads to a time in- proposed here.

dependent equation for(v®) that must be solved self-

consistently with the determination gffrom Eq. (9),

a2 .
r;ZITnT fdvfdvl g3f(r,v,t,)f(r,vy,t). (9) d(v") — Ae@Bl  Bo(g) =

{=(1-0a? (16)

IIl. AN OVERVIEW OF KINETIC MODELS
J

av"

x * \] .
b)), = £ J=—, It is remarkable that over a century after Boltzmann wrote
Vo

Yo his kinetic equation for a low density gas, the content of that
(11) equation remains masked by its complexity. Certainly, a
great deal is known about solutions near the equilibrium state

where v, is an average collision frequency but the mechanisms controlling nonlinear transport far from

equilibrium are still poorly understood. Significant progress
16 T has been made in the past 20 years with the development of

Vo(t)zgn"z Evo(t)- (120 direct simulation Monte Carlo methods by Bifé]. This

numerical tool is exceptionally powerful and provides access

Because of the scaling property fifcs both ¢ andJ* are oW to a wide range of nonequilibrium states for both elastic

independent of time. This problem has been studied in’;l_nd l_nelastlc collisions. F_or more detailed analytical |r_1$|ght,

detail in recent years and only a few results will be quotedkinétic models have provided a parallel powerful tool in rar-
here. Forv™ <2 the solution to Eq(11) can be expanded efied gas dynamics. The objective of this section is to give a

in Sonine polynomials about a Maxwellian with the resultPrief summary of the concept of kinetic models and their
[18] extension to inelastic collisions. Although the discussion is

limited to the Boltzmann equation, it is noted that the same

)(ﬁ(v*) =3

1 *(3+ .
¢ \3y

. " ca)( . . 15 ideas have been applied as well to its dense fluid generaliza-
") — 7%V 1 +T<v 4-5p"2 + Z) , (13)  tion, the Enskog kinetic equation, for both fluids and solids
[23,24.
with
A. Maxwell model
32(1-a)(1-2a?% _ : :
c(a) — cgla) = (14 The results quoted in the preceding section for the HCS

- 201 — o)
81-17x+30a"(1-a) are accurate but not exact. To obtain a more penetrating in-

vestigation of this and other solutions a simplified version of
. . the Boltzmann equation called the Maxwell model has been
guish the value determined by the hard sphere Boltzman 9

equation from that for the models introduced below. TheBroposed[ZS] whereby the kerneK(cg) is replaced by a

accuracy of the representati@iB) at smallv to within a few velocity.ir?dependent kernt(l(r.,t).. Then Eq(3) implies that .
percent for alla has been confirmed by Monte Carlo simu- the collision frequency also is independent of the velocity,

lation [19,20. The cooling rate calculated from E(L3) is u(r, ) =4mn(r,K(r, 1. The resulting model for the Boltz-
[21] ' mann collision operator becom§gz6]

J(r,v|f(t)) — I (r,vIf(t)

1
=-(r,b)| f(rv,ty—-—— | d
ur ){ (rv.y 47-rn(r,t)f V1
For asymptotically large velocities(v") has a qualitatively A
different behaviof 18], ><fdoa‘lf(r,v’,t,)f(r,vi,t) . (18)

The subscripB has been included ogs(«) here to distin-

IR PR)
4 —12(1 a)<1+3205(a)>. (15
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The collision frequencyr(r,t) is a free parameter of the The transport coefficients associated with Navier-Stokes
model. Its dependence on space and time is due to a possildigdrodynamics also have been calculated for the Maxwell
functional dependence ditr ,v,t). To fix »(r,t) the cooling model[26]. The agreement with those from the Boltzmann
rate is calculated directly for the Maxwell model with the equation for hard spheres is only qualitatiisee Sec. V.
result While the Maxwell model allows interesting and exact solu-
tions, it does not appear to provide a reliable representation
Iu= ;13(1 - 1). (19 of the Boltzmann equation for hard spheres and therefore the

. . results obtained from it must be interpreted with some care.
The collision frequency is now chosen to assure that the

cooling rate for the model is the same as that for the hard

sphere Boltzmann equatiod,=¢, given to good approxi- B. Other kinetic models

mation by Eq.(15). This requires the choice The Maxwell model, while simpler than the Boltzmann
5 3 equation, is still quite complex and even for the HCS the
w(r 1) = _<1 +—CB(a)>VO(r,t), (200  exact distribution function has been calculated only in one

2 32 dimension. Historically, for normal gases, a number of sim-

pler kinetic models have been applied with great success.
More recently, these models have been extended to granular
gases with a similar success in applications. To explain them
enerically, it is useful to rewrite the Boltzmann equatitn
> make the effects of cooling explidi29]:

where v, is given by Eq.(12). This completely fixes the
Maxwell model.

The approximate Maxwell form for the Boltzmann colli-
sion operator does not represent any real kinetics due to sc
tering by a potential. It is called a Maxwell model because
the property oK being independent of the velocity follows P 1
for scattering by Maxwell molecules interacting via an in- (— +v- V)f(r,v,t) - =¢V, - (V) =J'(r,v|[f(1),
verse fourth power law potential. However, the model de- t 2
scribed here retains the collision rules for inelastic hard (29
spheres, Eq4), and therefore is a hybrid not corresponding
to any potential. Still, it provides an interesting and tractableVith
model for which several exact results have been obtained ) 1
recently. J'(r,v[f(1) = 3(r,v[f(t) = 3¢ V, - (VF), (25)

The HCS has been studied for this Maxwell model as . . .
well. For small velocitiesh(v”) again has the form of Eq. whereV =v-u is the velocity relative to the average flow.

(13) except that the coefficiet(«) is replaced by[26] Then the conditior(6) becomes

12(1 - a)? 1
6@) — oy(a) = — 2L (21) 0
5+3a(2-a) Jdv . Iy =|o]. (26)
This is significantly different from the small velocity depen- Em\/2 0

dence of the hard sphere Boltzmann equation, suggesting

that the Maxwell model does not reproduce quantitatively,, addition, there is a null space fat(r ,v[f(t)

the HCS solution for hard spheres. Furthermore, the differ-

ence is even qualitative at larger velocities. The exact J'(r,v|fo(t) = 0. 27)
asymptotic behavior from the Maxwell model is

« Ap*K@ 29 The conditions(26) and (27) are the same as those for the
¢v) — Av : (22) conservation laws and the equilibrium state, respectively, for

Thus there is algebraic decay for the Maxwell model in con-elastic collisions. More generally, E(7) defines the HCS

trast to the exponential decay for hard spheres. The exponefft agreement with E¢(11). These two sets of conditions are
k(a) is the solution to a transcendental equafia,2g necessary for the macroscopic balance equafiprecursors
to hydrodynamick and the “universal” homogeneous state

k-2 fo. The basic idea of kinetic models is to replace the actual
1 1+a\k3 2 1 Boltzmann collision operator by a simpler structure, while
1+ 1—2(1 -a?)(3-k = ( 2 ) ” + J dx preserving the propertig26) and(27).

2F< )

2 0 There are many ways that a kinetic model can be con-
2 structed with these constraints. Perhaps the simplest are the

1 (k-3)/2 BGK mode(s) [7]:
x[l—(l——(l—a)z)xz] .
4 I (r V[fo() = = v(r O[f(r,v,t) = fo(r,v,0)]. (28

(23
Clearly, Eq.(27) is satisfied and the conditiori26) are im-
The behavior ofty(a) andk(a) is illustrated in the follow-  posed by requiring that the relevant momentsf adnd f,

ing section. should be the same:
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those from the BGK model and suffer from the same diffi-

0 culty of an incorrect Prandtl number. In the following section
f dv [f(r,v,t) —fo(r,v,D)]= 0 |. (29 the kinetic model based on EO) is generalized to include
Zm\2 0 a velocity dependent collision frequency and a Gaussian

form for g(r,V,t|f) that can accommodate the correct

L . . ) Prandtl number.
This implies thatf, is a functional off so the apparent sim-

plicity of Eg. (28) is misleading. For elastic collisionf, is

taken to be the local Maxwellian for consistency with the IV. GAUSSIAN KINETIC MODEL

known equilibrium state. In the case of inelastic collisions, it ] o .

would seem appropriate to chookgas the HCS distribution ~ The main objective of the present work is to propose a

from the Boltzmann equation. However, since this is notSynthesis of the BMD and ES models and to extend them to

known it is more common to choose agdinas the local include a velocity dependent _coII|S|on freqL_Jency. This will

Maxwellian. As described in the preceding section, this is &€ referred to as the Gaussian model. Like the Maxwell

reasonable first approximation to the HCS if the velocitiesT0del, the Gaussian model admits exact analysis in many

are not too large. However, it precludes use of the kinetidNt€resting cases, but it is simpler and captures more accu-

model to study the HCS itself. The collision frequendy,t) ~ rately the qualitative features of the Boltzmann equation. In

is a free parameter of the model, usually chosen to fit one ofiS Section the model is defined and the initial value prob-

the transport coefficients. On dimensional grounds,t) lem is solved exg_ct_ly for spatlally_ homogeneous stat(_as. Itis

«n(r ) TYr ,t) and therefore also a functional 6f shown that all mltlal states.rap|dly approach a .unlversal
The Chapman-Enskog solution to the BGK kinetic equa—HCS' The HCS is then SIUd'ed. and compared with known

tion for inelastic collisions has been obtained to derive the{efsmtS fo_r the Boltzmann equation for har_d spheres. Fmall_y,

associated hydrodynamic equations to Navier-Stokes orddt'S specialized to the case of a \_/elocny independent colii-

(see Sec. Y [21]. The dependence of all transport coeffi- sion frequency, for comparison with the HCS for the Max-

cients on the restitution coefficientis in good semiquanti- well model. . i . .

tative agreement with that for the Boltzmann equation. How- The quel is defined by the choice of a Gaussian for

ever, the model suffers from the same well-known probler‘r’rQ(r v, tif) in Egs.(30) [31],

for elastic collisions of an incorrect Prandtl numbgZ,/ «, p

whereC,=5ks/2mis the specific heat per unit massis the <_ +V- V)f(r V0 == u(r,V,)[f(r,v,t) —g(r,V,t[H)],

shear viscosity, and is the thermal conductivity. Since the at

BGK model has only one parametetthe absolute value of (30)

either the shear viscosity or the thermal conductivity is

wrong by a factor of=2/3. This can be corrected by choos- .

ing for f; a more general Gaussian, with an additional pa- g(r,V,t|f) = A(r,t)e”ViBj 0V, (32

rameter leading to the ES model for elastic collisi¢hg].

BGK models of this type for granular gases have been disThe scalar functior(r ,t) and symmetric tensd;;(r ,t) are

cussed recently by Astillero and San{@®]. determined in part by the conditioi(g),
A related but different kinetic model attempts to represent
more directly the gain term of the Boltzmann collision op- 1 M,
erator[13]. Equation(2) is written as M
) Jdv v(r,V,0)g(r,V,t|f) = ; :
J'(r,v[f(t) = — v(r,V,)[f(r,v,t) —g(r,V,t|f)] QmVZ My — EnTg“

=30V, (V). (30)
(33
The gain functionalg(r,V ,t|f) is now chosen for conve-
nience and simplicity to define the model, but restricted bywhereM; are moments of the distribution function, weighted
the exact condition§26) and (27). by the collision frequency,
In contrast to the BGK model, the conditia®7) now
provides an equation that determines a nontrivial HCS solu-

tion. The simplest choice fay(r,V ,t|f) is again a Maxwell- My

ian, but with the temperature modified to account for the M, :f dv v(r,V,t)f(r,v,t). (34)
extra term on the right side of E¢30). For simplicity, ap- M Zm\2

plications of this kinetic model to date have also chosen a 2

velocity independent collision frequency. In the limit of elas-

tic collisions it reduces to the BGK model. The choice of a Gaussian is primarily for convenience and
The HCS solution can be obtained exactly for this modelsimplicity. However, it can be understood also as the result

and, like the Maxwell model, it has algebraic rather thanfrom information theory to determine a function when only

exponential decay at large velocities. The transport coeffithe moments in Eq(33) are specifiedsee Appendix A It

cients for this second model are of comparable accuracy ttollows directly that
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M(r,t) = My(r,t)u(r,t). (35) Similarly, guidance for the choice of the velocity depen-

) . dent collision frequency/(r,V,t) is obtained from that for
For the special case of constant collision frequency thesg,, Boltzmanr{see Eq(3)]

become

1 T
A— n(det7B)™2 M, — Myu, 3TB— (36) vg(r,V,t) = m,zJ dV 1 f(r,V,0)|V = V. (42)
so the coefficients of the Gaussian are related to the density.gr smallVv this goes to a constant

temperature, and flow velocity. This also illustrates that the '

elements oB are not fully determined by the moment con-

ditions (33). f dv,fVv,
Itis u;eful t0.d|V|de the matri®;; into .a part proportional vy — NV, V= , (43)
to the unit matrix plus a traceless part: Jdv f
1

Bj=Bd&;+Bj, B;j=(Bj-B&), B=3By. (37

In the following a tilde above a matrix will be used to denote While for largeV it becomes linear irv,

its traceless part. The special case of %) shows that the

trace ofB;; is proportional to the temperature and therefore a vg — wa2n(r,HV., (44)
linear functional off. It is reasonable to choose the remain-
ing elements ofB;; also to have a linear relationship fo
Furthermore, it is required that this traceless part should va
ish atf,, the solution to Eq(27), which should be isotropic
(to agree with the Boltzmann equatjon

A representation of the complete velocity dependence for
the Gaussian model, preserving these limiting forms, is ob-
Yained from Eq(42) using a Maxwellian forf:

* * * V —u
& v(r,V,t) = x(@)vo(r,hvy(V'), V o)
— . o
B-:fdv —L (f-1). (38)
Y 5f(v) f:fO 0

: . . . . . 52 . A )
Thus,.the ga!rg(r V) is e}nlsotroplg iny When e\{aluated (V') = VL vy (20" +v —1)ﬂ erf(v’)|. (45)
for anisotropic state§. This is an implicit definition sincé, 16 2

is a function ofB;;. However, the form is such th&; be-

comes diagonal when evaluated forf,, and hence so does Herex(«) is a second undetermined dimensionless constant.

Bﬁl. This assures thaty, when it exists, is isotropic. The The particular choice fox(«) and the resulting accuracy of

trace of By is a scalar moment of degree(ixcluding the  the transport coefficients is discussed in the following sec-

weight factorv) whenB;;=0. Consequently, it is suggestive tion. It is found thab((cr) is a smooth function of of order

to takeB; as the traceless part of the moment of degree 2 ofNity. This form for v (v) has the correct large velocity

f-fo. The final form forBy is then dependence of E¢17) but with the coefficient differing by a
factor of x(a) from the Boltzmann equation.

At this point the Gaussian model has been specified in
terms of the two remaining constantéx) andy(«). In the
following section it will be shown that the three transport

1 coefficients at Navier-Stokes order are functions of two in-
D;j(V) = m(ViVj - 55”-V2>, (39 dependent collision integrals. The constarta) and y(«)
are chosen to assure that these two collision integrals are the
wherey(a) is an undetermined dimensionless quantity inde-same as those from the Boltzmann equation. This leads to a
pendent of the velocity. The conditioi83) and (39) com- ~ coupled pair of equationgEgs. (110) and(111) below] that
pletely determine the parameteksB;;. are so!ved numerically. This completes the definition of the

It remains to choose the collision frequenay ,V,t) and ~ Gaussian modgB2].
the cooling rate/(r,t). In principle, these are specific func-
tionals of f in the Boltzmann equation. Here, they are taken A. Spatially homogeneous states
to depend orf only through the temperature and density. The

cooling rate is chosen to be the same as the Boltzmann result In the rest of this section, attention is restricted to spa-
(15), tially homogeneous states. It is shown that for any arbitrary

homogeneous initial condition, the solution goes over to a
universal HCS in a few collision times. For these initial con-
ditions u(r ,t)=u is constant and by a Galilean transforma-
tion it is possible to choosa=0. Also from the continuity
equationn(t)=n is constant. The temperature obeys the cool-
16 7T(r,t) ) . T .
vo(r,t) = En(r,t)az m (41) ing equation(8) which is now written as

y(a)
Bij =B‘Sij +n—§] f dVDij(V)(f_fo),

3
—Cs(a)> w(r.t),  (40)

S22
{r.n =1 a)<1+32
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TlT=-¢, ds=yyt)dt, = %
Yo

The new time variables represents the average number of . _ ) ) )
collisions in the time. It also follows from the definition of 1 he collision frequency is a monotonically increasing func-

{(t) that ¢ is constant. The temperature therefore has dion of the velocity sov' (V') =v'(0). This gives the inequal-
simple exponential dependence on the collision number: ity

(46) K(v*,s):exp(— f ) dg’u*(e‘<1’2>§*§’v*)>. (54)
0

T(s) = €< T(0). 47 K" s <e” Os, (55)

Now consider a general homogeneous initial distribution . . ) ] o
and look for solutions to the model kinetic equation in the Sincev (0) is of order unity, the domain of integration in Eqg.

dimensionless form (53) is exponentially bounded fos>1 and for larges the
integral becomes independent ®fThe first term vanishes
R . A, exponentially fast and the independent HCS solution is
f(v,t) =nuyf (v,9), Vv =Vvlvgt), v = —vo(t) i obtained:
(48)

The dimensionless form for the model kinetic equation for f (V',8) — ¢(v") :f ds'e ¥ K", 8 (e MRSy
homogeneous states becomes 0

1 xg (e My o). (56)

<f75+ SL(B+V V) + v*(V*)>f*(v*.S) =V (V)g (v, slf),

2 It is readily verified thatp(v") is a stationary solution to Eq.

(49 (49) and hencep(v")=f,(v") is the unique HCS solution. It

follows from the definition ofB that this distribution be-

with . . g :
comes isotropic on the same time scale as (B4) even if
g (v',8f) = vdg(v,tf)/n :A*(s)e—vi*(BLl)ij(S)vI. the initial distribution was not:
T.he momeniM , vanishes since=0. The remaining dimen- BIJ (s) — %Bﬂk(w)@j - B*5i,-
sionless moments are
For the class of homogeneous initial states considered,
X Ma(t) 1 this result shows that the HCS is the universal solution after
M;(s) B Nyy(t) B . e several collisions. Hence it is the special characteristic solu-
M(s) - 2Ms(t) =| v gv*z v (V)F(v,s). tion for homogenous states analogous to the Maxwellian for
3 — 3 elastic collisions. The resulb6) is stronger than thel theo-

3nTwg(t) rem for elastic collisions in the sense that it implies the ap-

(50 proach to the HCS is pointwise in velocity space. It is inter-

* " esting to observe that this analysis does not require the
The parameteré (s) and Bij(s) are related to these by explicit form for »* (V')g' (v ,5/¢") and so it applies to mod-

1 ) els with choices other than the Gaussian. In fact, it applies to
v 2 L v VA (e by = My(s) the Boltzmann equation itself although in that case 66)
Zp*? My(s) - ) is a more implicit functional relationship whose solution
3 must be proved. The consistency of the moment conditions

(51) (50) and (51) is verified in Appendix C using the explicit
form (56). The functionsA"=A’"() and B"'=B,(*)/3 are
R e 1) fixed by the fact thaB;=0 and
BIJ:B 5|J+y dV Uivj _55”1) (f _fo). (52)
1
The formal solution to the kinetic equation is found in Ap- 1) . .
pendix B with the result (1 =) 2 $). (57)
3
f'(v',9) = e CREK (", 9)f (e 24 v, 0)
s . . The explicit forms for these equations also are given in Ap-
+f ds e RIS K" s (e e sy pendix C.
0

xg (WIS s g, (53 B. The homogeneous cooling state

whereK(v",s) represents the dynamics due to the loss term More explicit properties of the HCS are easily obtained.
alone, First, it can be written in the more convenient form

051301-7
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—e— Boltzmann

N e Gaussian Model
04 ---a--- Vel Ind Model
SN Maxwell Model
'\'\\ 2,
= S
T 021 RN

FIG. 1. Comparison of coefficientsg(a), cg1(a@), and cy(a@)
with cg(a).

2N [V 2 (v dx
V) =5+ dx@ exp(— —*f —
é}U 3 0 Jy X

2

X v*(x’)) V(e (59)

The coefficientsA” and B* are determined from Eq57).
Both are smooth functions af with the limiting valuesA’
=732 andB =1 ata=1. Practical fits for other values af
in the range 0.4-1 are given by

A" =0.547 - 0.274 - 0.09472,
B~1=1.84-0.27%-0.56%4.

Similarly, fits for x(a) andy(a) are found from Eqs(110
and(111) to be

x(a) =0.533 + 0.156 — 0.302¢2,
y(a) =0.906 - 2.666 + 0.724°.

For smallv” the form of ¢(v") is Gaussian,

H(v") — C; exp—Cw'?, (59)
with
_Ap
1- 3 + p’
_BHP) (g 3 d*’ )
2= (5+p) (B 26+pr (0 a2 ) Y
2 (v" =0)
= 61
. (61)

The coefficientcg(a) in the polynomial expansiofil3) for

small v" is shown for comparison with the corresponding
Boltzmann hard sphere result in Fig. 1. A practical fit &gr

in the range ofa mentioned above is given by

PHYSICAL REVIEW E 69, 051301(2004)

S N

—— Gaussian model HCS

04 ----- Gaussian Model sonine
e Boltzmann Sonine

--4a--Vel Ind Model HCS

*

v

FIG. 2. Comparison of the HCS divided by the Maxwellian for
the Gaussian model and the velocity independent collision fre-
qguency model with the Sonine approximation using bx{tw) and
cg(a) for @=0.9.

cg(a@) =0.247 + 0.865% — 2.907? + 1.7934°.

The model is seen to reproduce quite well the Boltzmann
results fora=0.8 and has the same qualitative behavior
for smaller @. As indicated in Fig. 1, the corresponding
results for both the Maxwell model and the Gaussian
model with velocity independent collision frequen¢ip
be discussed in the following sectipare always positive
and much larger. This is the first of several observations
showing an improvement of the model due to the velocity
dependent collision frequency. Figure 2 shows the exact
distribution function reduced by the Maxwellian at
=0.9. Alsoshown are the results from the polynomial ex-
pansion usingcg(a) and usingcg(a) for the Boltzmann
equation. It is seen that the polynomial expansion follows
the exact HCS closely and is close to the expansion using
cg(@). The polynomial expansion usirg(a) is very close
to the actual distribution obtained by Monte Carlo simu-
lation of the Boltzmann equation far <2. Therefore the
model gives a good representation of the Boltzmann dis-
tribution forv” <2. This is found to be true over the whole
range ofa.

The largev” dependence can be obtained as follows. First,
rewrite Eq.(56) as

* _I(U*7C) _E U*d_xl * !
dv) = 3 eXp< é*Jc X,v(x )). (62)

l(v",c) = %fv dxxX exp(— %J d_)f’V*(X/))V*(X)e_B*_lxz
g Jo IJy X

=|(»,c) - 2? f:c dxx@

xexp(— E d—)frv*(x’)) (e (63)
I4 X

X
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This form holds for anyc<v". The integral satisfies the 0 -
bound —o—HCS Gau_sslan Model
N Asymptotic form
. o 1o \ ------------ Maxwellian
I(2,0) = 1(v",c) < 1,2V (c)e® <, (64) ] \\ —— Exponential tail
wherel, is a constant. SincB” is of order unity, this shows AN
that1(v”,c)—1(e,c) for v*=c>1 with deviations of order 2 \
exp(—v™?). On this scale of velocities the distribution func- g 5 e
tion becomes % \a\%-—g—o-c»w —
o =0 2 Jv* ax’ , |
d(v') — 3 exp< cJ). % v (X )). (65)
This is not yet the exponential decay quoted in Edp) for
the Boltzmann equation. Instead, that exponential decay re -10 T T T - T
quires a still larger velocity scale due to the slow approach of 2 4 &
v (x') in Eq. (65) to its largex’ limiting form v’

X B " FIG. 3. lllustration of the crossover of the HCS for the Gaussian
v (X') — BeX' + — +ordere™™ ", (66) model to the intermediate form, E@7), by plottingd,-In ¢(v") for
2x the HCS, the asymptotic form, and the Maxwellian &or0.8.
where Bg/x(a)=Bg is the coefficient of the large velocity L X
limit for the collision frequency given in Eq17). Thus Eq. So") = A f” dxxse'B*_lng exp(— EJU %V*(X,))
dx e X'
0 X

(65) behaves as v
e e A v 2 (v dx ,
$(v") — l(w,c>exp[_ (ZZ*BG(U* —0)+ 3>ln v’ SACI 3 L dx ex"<_ ?L X—’f,, (x’))
+ B (i* - l)] - (67) X (3¢ - 28 Ixhe® (69
I \v ¢

The dominant exponential decay is the same as that for th€he second term on the right side vanishesvatl leaving
Boltzmann equation,(16), with only the coefficientBg  the expected Maxwellian. Far<1 the second term gives
changed tQ3g. In fact, a similar analysis of the derivation of the exponential decay at large velocities. In order to domi-
that result for the Boltzmann equation shows that the samaate the first term it is necessary that>1. Since the coef-
intermediate velocity form{(67) applies there as wellwith ficient in the exponential decay is proportional b—a)™*
Bc— Bg)- The crossover to pure exponential decay requireshe relevant domain for overpopulation is >(1-a)™.
very large velocities. In practical terms fer=0.8 this form  Clearly for «— 1 this overpopulation becomes physically in-
holds to within0.1% forv =6 whereas the exponential significant.

decay has the same accuracy only for much larger veloci- In summary, it has been shown that all of the qualitative
ties. This is illustrated in Fig. 3 foe=0.8. Thederivative  features of the HCS for the hard sphere Boltzmann equation
of the logarithm of the distribution is plotted so that the are reproduced by the Gaussian model. In the following sec-
initial slope for small velocities is near the Maxwellian tion it is shown that this quality of the model extends to
value (-2v), while the asymptotic large velocity value is transport properties as well.

the constant coefficient of the exponential decay

(-2B5/¢) shown as a dotted line. The intermediate cross-

over is seen to be governed by the asymptotic f¢6%), C. Limiting case: Velocity independent collision frequency

. . 2, . To emphasize the effects of the velocity dependence of
v dyIn o) ~ = v_<3 +?V v )>' (68)  the collision frequency, it is instructive to consider the same
Gaussian model with a velocity independent collision fre-
Figure 3 also shows that this more general form persists tguency, (V') — v,5(@). The HCS for the Gaussian model
very large velocities before the final exponential decay isthen reduces to that of the BMD model. The single parameter
attained. This crossover form is expected to apply for thedf the model, the constant collision frequency, can be chosen
Boltzmann equation as well and should be taken into accourip fit the shear viscosity or the thermal conductivity. Due to
in simulation or experimental attempts to measure the overthe choice ofx(a) made here the model is tailored to fit the

population at large velocities. thermal conductivity. The functional form @B(a) is given
To explore the limiting form fora— 1 it is useful to in- by Eq.(101) of the following section. The HCS solutiqb6)
tegrate by parts in Eq58) to get simplifies to

051301-9
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¢(v*)=A*f dsese P exp [-BlePy"?], (70)
0
whereA",B", M}, M3, andp are given by
A =(7B)%% B'= _(p; 2 M=M=,
p=2v4/L. (71

A change of variableg=e 2Py"?p/(p-2), allows this to be
expressed in terms of an incomplegdunction:

_ /2
p (p 2)" v*-<3+p>y(p+3, p 2)
p 2 'p-2
(72)

p") =

- 277_3/2

with

yx,y) = foy dte 't 1, (73

PHYSICAL REVIEW E 69, 051301(2004)

10°4 "~ ——HCs
N - Asymptote Eq (77)
o Eq (76)

*

"4

FIG. 4. lllustration of crossover of the HCS for the velocity
independent model from the Gaussian given by &) to an al-
gebraic decay, Eq77) for «=0.8.

The asymptotic behavior for large velocities is obtained

Interestingly, the dimensionless distribution function is en-from Eq. (72) using the limiting form for the incompletg

tirely characterized by the single const@st2v g(a)/{ ().
Its relationship toa is fixed by the choices of cooling rate
33
8| 1+—(1-a)+

and collision frequency:
19- 3
Cg(a)
16 1024

p:
3
51-a) |: 1+ —CB(a)]
32

For small velocities the representati8) applies withc(a)
given by

(74)

c(a) — Caila@) = (75)

(p-4)p

Figure 1 shows a comparison of the coefficiegi(«) with
that for the Maxwell model given by E@21). They are seen

function:

-p/2
d)(v*) — %m(i) F( p+ 3>U*—(3+p)_ (77)

p-2 2

This algebraic decay is similar to that of the Maxwell model,
and in contrast to the exponential decay for the hard sphere
Boltzmann equation. This difference is due to neglect of the
velocity dependence of the collision frequency in both mod-
els. Since the exact solution to the Gaussian model is known
the crossover from Gaussian to algebraic forms can be deter-
mined explicitly. Figure 4 illustrates this fo=0.8. The
crossover domain occurs far'=1, increasing slightly
with decreasingy, with no special intermediate behavior.
Figure 5 shows a comparison of the exponent for the al-
gebraic decay for the Gaussian modél)=3+p(«), with

the corresponding result for the Maxwell model obtained

to be similar for weak dissipation but the Gaussian modefrom the solution to Eq(23). Near «=1 both exponents
grows more rapidly with increasing dissipation. Of course,diverge as(1-a)™! but with different coefficients.

this difference can be eliminated by a different choice of the

In summary, the simple Gaussian model with constant

parameters for the Gaussian model for a closer agreement {glision frequency captures semiquantitatively all of the rel-
the Maxwell model rather than the hard sphere Boltzmanryant features of the Maxwell model. It has the additional
equation. The accuracy of this polynomial representation iseature of demonstrating explicitly the solution for all homo-

within a few percent for relatively weak dissipation, compa-geneous states to show the rapid transition to the homoge-
rable to that observed for the hard sphere Boltzmann equareous cooling state, and the detailed features of that state.
tion. It is clear from this figure that the HCS for models with The a|gebraic decay at |arge velocities |mp||eS divergence of
velocity independent collision frequencies differs from thatmoments of degree greater than some critical value for given
of the Boltzmann equation and the true Gaussian model a4, The evolution of such moments for given initial states can
small velocities(see Fig. 2 Also, at small velocities, the pe studied in detail to characterize the growing overpopula-
HCS in Eq.(70) can be represented as a Gaussian given byijon of large velocities in the HCS. However, the HCS for
both the Maxwell model and the Gaussian model with con-
stant collision frequency differ qualitatively from the Boltz-

76
(76) mann result for large and small velocities.

* P\ p(p+3)/(p+5)(p-2) 102
) — —— AgP(P+3)/(p+5)(p-2)]v =
H) = 3
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curs only through the parameters of the HCS. More specifi-
cally, fO(r,V,t) is thelocal HCS obtained from E¢10) by
replacing the density, temperature, and flow velocity by their
actual values in the spatially inhomogeneous state:

fOr,V,0) =n(r,Hug3r,H)¢(V), V' =Vig(r,b),
(80)

ol Maxwell Model
1----- Vel Ind Model

vo(r,t) =\2T(r,t)/m.

The second term on the right side of E@8) is propor-
tional to the gradients,

fOrV,)=A-VInT+B-V Inn

0.0 0.2 04 0.6 0.8 10 1 2
+Cij§<ajui+&iuj—§5,jV 'U). (81)

FIG. 5. The exp_on_ent of algebraic dec_ay for the Maxwell model,[ There are no contributions from the expansior/of,t) to
Eq.(23), and velocity independent Gaussian model, @) plotted  first order as this vanishes for both the Boltzmann case and
for the modeld. The functions A(V|n,u,T), B(V|n,u,T),

as a function ofa.
and Cij(V|n,u,T) are solutions to the integral equations

V. NAVIER-STOKES HYDRODYNAMICS 0
In this section, states with smooth spatial and temporal (— OTor+ L - %)A:A, (82)
variations in the density, temperature, and flow velocity are
considered. These are states for which a macroscopic hydro-
(- {9Tor+£)B=B+ {94, (83

dynamic description is expected to apply. First, the results of
the Chapman-Enskog method to solve the kinetic equation is
recalled. Next, the transport coefficients obtained from this (- g(O)T<9T+£)C”- =Cj (84)

solution are identified exactly and in a first Sonine polyno-
mial approximation. Finally, these latter expressions areyith the definitions

evaluated for the model and compared with the correspond-
ing results for the Boltzmann equation. AVnUT) = (g . %V -Vv)f(o)v V0 %va(o)’

A. Chapman-Enskog solution
p g (85)

The hydrodynamic equations for spatially inhomogeneous
states are obtained from a special solution to the kinetic -
equation generated by the Chapman-Enskog method. The B(V|n,u’T):—Vf(0)__va(o), (86)
method is quite general and requires only the prope(Bgs m
for the collision operator. Since these are preserved in the
Maxwell and Gaussian models the results obtained earlier for Cij(V|n,u,T) = Vi((yvjf(o))_ (87)

the Boltzmann equatiof21] apply for the models as well.
The solution is “normal” in the sense that all space and timeThe linear operatol is the collision operator expanded to

dependence occurs only through the hydrodynamic fields. Téirst order inf®,

first order in the spatial gradients of these fields it is found to

be Lf® = f v’
f(r,v,0 =10,V + fP(r,Vv,1), (78

whereV =v-u(r,t) is the velocity relative to the flow field.
The first term of Eq(78) is the solution to the kinetic equa-
tion to zeroth order in the spatial gradients: The Boltzmann equation and all models considered give
1o © o the same macroscopic balance equations for mass, energy,
¢ (r,OVy - VIO, V,0]=30ro[fP®), (79  and momentunfor density, temperature, and flow velogity
because they all imply the propertié®. The Navier-Stokes
where the superscript ofi” denotes Eq(9) evaluated with hydrodynamic equations follow by evaluating the momen-
(O, Equation(79) is an equation for the velocity dependencetum flux P;; and the heat fluxj in the macroscopic balance
of fO(r,V,t), which is thesameas that for the HCS distri- equations using the Chapman-Enskog solution to first order
bution of the previous sections. The dependence droc-  in the spatial gradients, with the results

83(r v|f(1)

1) ’
vy | oV (@9

f=f(0)

B. Transport coefficients
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of these. However, in general it is useful to represent these

2
Pij=- ”(ajui Tau =56V 'U>1 q=-«kVT-pnVn. guantities as an expansion in a complete set of polynomials

and generate approximations by truncating the expansion. In
(89) practice the leading term in these expansions provides a very

The first of these is Newton’s viscosity law, whereis the ~ @ccurate description over the full range of dissipation and
shear viscosity. The second is a generalization of Fourierdensity. The determination df° to leading order in the So-
law, wherex is the thermal conductivity. There is an addi- Nine polynomial has already been given by EIf). Simi-
tional contribution for granular gases proportional to the denlarly, the leading contributions to the expansions.4f 5,
sity gradient, with a transport coefficient, that does not andCj are found to bg21]

occur for normal gases. These are identified from the

Chapman-Enskog solution §21] A(V) c4S(V)
1o\ BV) | — fu(V)| czS(V) |, (95)
ﬂ:nT(V”_Eé/( ) ' (%0 Cij(V) cecDj;(V)
k= e (1, = 20 ML ), (91 (V) = n(mud) e Vo,
1512 1 with the coefficients
-2 _ 37001 FOK | =
=" (2, = 3(°) (g K0+3c>, (92) -
with the definitions (c A)_ om f (A(V)-S(V))_ " 52"
cs/ 15nT2 BV)-S(V) /) 2m |
de Dij(V)LCij(V) _ﬁﬂ
v,= ) (96)
de D;;(V)C;;(V)
T? J T?
= dVCi'VDi'V:__ . 97
fdv SV) - LAV =T i(V)D;(V) o7 (97)

VK: ’

The distribution functionf¥ in this approximation is ob-

JdV S(V) - A(V) tained from Eq(81),

de S(V) - LB(V) f<1>—>—fM[%(KVT+MV n) -S(V)+#
Vu= . (93
Jdv S(V) - B(V) Xﬂ%(f?inJff?jUi—gdjV 'U>Dij(v):|- (99)

The functionsD;;(V) andS(V) are To evaluate the transport coefficients the fori®8)«92)

1 1 5 are used, with the frequencies(a), v.(«), andv,(a) deter-
D;;(V) = m<vivj - évza,j), S(V) = v(imv2 - ET). mined in this approximation by
(94) f
dV D;; LfyDi; fdvs-ﬁf S
Also, ko=157,/4m and 5,=5(mT)¥2/ 160272 are the low ~ = IME o M
density values of the thermal conductivity and the shear "7~ O :
viscosity in the elastic limit, respectively. The constant de fmD;;Dj; defM S-S
c(a) is the same as that occurring in the representation
(13), appropriate for either the Boltzmann equation or the (99
model being considered. The forn@@0)—(92) provide the
exact expressions for these transport coefficients. These integrals have been calculated for the Boltzmann
equation[21]
C. Sonine polynomial approximation
- . o x 1 1
More explicit results require determination 8 and the v,g= B - <1 --(1- a)2> (1 - —cB(a)) ,
solutions A, B, and C;; to the linear integral equations vo(r, 1) 4 64
(82—«84). The Gaussian model allows explicit construction (100
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s« _l+a 33 19 - 3
VKB_VMB_T l+l—6(l—a’)+m03(0{) .

(102

The average local frequenay(r,t) is given by Eq.(41).
The corresponding results for the Maxwell moi26] are

. l1+o)4 -« 3
Vi = %(1 : 3—2cB(a>>, (102
* * 1 3
VM= Vum = Zl(l +a)(19 - 11a)<1 + S—ZCB(a)>.
(103

Finally, it is straightforward to perform the same calcula-
tions for the Gaussian model considered here. The form of
the linearized collision operatdt for the Gaussian model is

obtained in Appendix D:

Vg(O)Dij (V) J dV,Dij f(l)

L£fV=(1-P)pf¥ - Y
f dvD;;D;;g”
(104)

Here P is a projection operator defined by

PX = vg(o)apgf dvy, X, ¢9=g(f?), (105

and{y,} is the orthonormal set,

/1

N—l
1

N RN EW
21— N2

[/
4 li(vZ _ &)
N3 Ny

(106)

The normalization constant;, are given in Appendix D.

With these results the frequenciegg, v.g, and v, are
found to be

JdV DjjvmfmDjj 1 JdV Dijrug?D;

V”G:X

0)
Jdv fuD;; D fdv D;9°D;;
(107
dev S (L-P)vyfuS

VG~ V[J,G = . (108)
J dvfy

The constantg(«) andy(a) are now chosen to assure accu-

PHYSICAL REVIEW B9, 051301(2004)

quiring that the above frequencies are the same as those from
the Boltzmann equation, i.e.,

VG = Vyr VG = ViB- (109)

It follows from Eqgs.(90) and(91) that the Prandtl number at
a=1is v, /v,. So this choice assumes that the Gaussian
model also will have the correct Prandtl number in the elastic
limit. This gives

f dvfy S

X(@) = v,5(a) , (110
fdv S (1-PvyfuS
de DijVMfMDij
y(a@) =-2| v,g(a) - x(a)
-1

X(a) f dv DIJ VMg(O)Dij

X . (111

f dv g(o)Dij D”

With these choices, the transport coefficients are given by
Eqgs.(90—92), and the only differences from the Boltzmann
values results from the replacementogfa) by cg(a) in the
expressions fok and w. It should be noted that Eqsl11)

and (110 are implicit since the right sides depend xifay)
through the collision frequency in E@57) that determines
the parameteré andB;;. In practice the calculation of(a)

is done iteratively. First, the integrals in Ed.10 are evalu-
ated ata=1 to determine a zeroth-order estimate ).
Then Eq.(57) is used to get a first approximation foand

Bjj. Next, these results are used in E(kl1) and (110 to
calculate the first approximation t{«) andy(a). The pro-
cess is repeated starting with this first approximation for
X(a). The results reported here are for two iterations, show-
ing good convergence of the process. The fits obtaineadt for
andy are

x(a) =0.533 + 0.156 — 0.30247,

y(a) = 0.906 - 2.66& + 0.724°.

For a=1 these results reduce to

Vs = a0 =1, vig(D)=v,6(1) = vg(D) =3,
(112

x(1) = 22

1153 (113

1247

y(1) = - 1106

These results define a new kinetic model for normal gases,

extending the ES model to one with a more realistic velocity
dependent collision frequency.

Also, for the special case of a constant collision frequency

rate transport coefficients. This is most directly done by rethe general results reduce to
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14

Boltzmann
® Gaussian Model /Vel Ind Model
----- Maxwell Model

0.7 08 0.9 1.0
a

FIG. 6. Plot of the fitted dimensionless viscosiiy= 5/ 7, for

the velocity dependent and velocity independent collision frequency
Gaussian models with the Boltzmann and Maxwell model results.

X(@) vy = vg(a), y(a)=- z(i’iﬂ) - 1). (114)

VZB(OZ)

PHYSICAL REVIEW E 69, 051301(2004)

® Gaussian Model
Boltzmann Equation
-------- Maxwell Model

O Vel Ind Model

[0

FIG. 8. Comparison ofu"=un/Tk, as calculated from the
Gaussian models with the Boltzmann and Maxwell model results.

ity, and the new transport coefficieptfor the various mod-

els compared with the Boltzmann equation results. It is seen
that the shear viscosity for the Gaussian model with either a
velocity dependent or velocity independent collision fre-

This case is relevant also if one wanted to use the Gaussiajuency is indistinguishable from the Boltzmann result. The
kinetic*model to represent the Maxwell model*. Then in Eg.small differences between the velocity dependent collision
(}14) vnB(a) and v, g(«) should be replaced bynM(a) and
v (@), respectively. Finally, for botee=1 and constant col- « andu coefficients are due to the differences betweg{ia)

lision frequency the usual ellipsoidal statistical model is re-andcg(«), and by truncation of the above iteration solution

covered:

*

V,,G(l) =1,

V(D) =v,6(1) =xny =35, y=-1.

(119

frequency Gaussian model and the Boltzmann results for the

for x(«) after two steps. The differences in the case of the
constant collision frequency models are more pronounced
because as seen in Fig.ck;(a) andcy (@) are significantly
different fromcg(a) for smallera values. These results show
that the Gaussian model has the ability to fit the transport

Figures 6—8 show the shear viscosity, thermal conductivproperties to the hard sphere Boltzmann results foreall

6

® Gaussian Model
O Vel Ind Model
Boltzmann equation

........ Maxwell Model

1.0

FIG. 7. Comparison of dimensionless thermal conductiwity

=kl kg as calculated from the velocity dependent and velocity inde-

including the correct Prandtl numbe/C,/x=2/3 ata=1.

The other model do not have this capacity and the associated
transport coefficients do not represent as well those from the
Boltzmann equatior{26], although they yield the correct
Prandtl number a&=1. Clearly, the inclusion of the velocity
dependent collision frequency in the model allows excellent
agreement with the Boltzmann results.

VI. HYDRODYNAMIC MODES AND GREEN-KUBO
EXPRESSIONS

The simplest solutions to the Navier-Stokes equations are
those for a large system with small perturbations about the
HCS (not the local HCS as considered abpvEhe resulting
five independent solutions are referred to as hydrodynamic
modes. For a gas with elastic collisions, these would corre-
spond to shear diffusion, heat diffusion, and damped sound
propagation. The hydrodynamic modes are more compli-
cated for inelastic collisions but their properties have been
worked out and discussg@1l].

The Chapman-Enskog method provides a normal solution

pendent collision frequency Gaussian models with the Boltzmanrhat implicitly presumes the existence of a hydrodynamic
and Maxwell model results.

description. A more fundamental study of the context or va-
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lidity of hydrodynamics is possible by determining the pos- 0
sible solutions to the Boltzmann equation for small perturba-
tions of the HCS. The resulting linearized Boltzmann
equation is obtained by substitutifgf,c{1+A] into Eq.

(1) and retaining terms linear iA,

(s+V -V + LA =0. (116

ldv

The dimensionless units of Sec. IV have been used, and the
linear operatorZ, is defined by

b

dl

_ 1 _ 1% 9
LoA=¢ L(PA) - ¢ 2 ﬂv*(¢A)' (117) -84 —— Gaussian Model
| Maxwellian
For elastic collisions the second term of Efj17) vanishes, @~ | ~7~ Vel Ind Model
¢ becomes the Maxwellian, and, is the usual linearized A0 T - T - T

Boltzmann collision operator. Its spectrum includes a five-

fold degenerate value at zero. The corresponding eigenfunc-

. . . - * *2 .

tlons_areAH linear combinations of ]V U The_se eigen- FIG. 9. Plot ofg,"In ¢(v") for the Gaussian model and velocity

functions are known as the summational invariants becausgyependent Gaussian model and the Maxwellianafe0.8.

their sum for two particles is conserved in a two-particle

collision. Thus, fora=1 the eigenfunctions and eigenvalues : . .

of L, are known and constitute the hydrodynamic modes inggﬁir;g?tf'fealggﬁéa'?t daeca%thorat:Ceo;/;lr(])m% (ﬁgeg)?eon_t

the long wavelength limit. nential d ca? ofp y PP as 9 P
The identification of the linear combinations of these hy- ecay oip.

drodynamic modes as eigenvalues and eigenfunction, of engclegsu;fo%STﬁ;vshtrlj?gEjher:sn?if i;%rélgts:air;]t ?ﬁshgg\éﬁcdlﬂfﬁﬂ}
has been given recent[jt4,15 with the results y y

wheny” > 2. This is the crossover of the distribution function
LoXn=AXm (118 to |t§ large velocity form(68). The fact that _the. hydrody—
namic modes are related to the log of the distribution func-
tion lends new importance to these asymptotic forms.
A =0, \,= @, Ag=Ag= A= - Q)_ (119 Related pro_perties are the fluxes appge}ring in the Green-
2 Kubo expressions for the transport coefficients. The expres-
sions in the preceding section can be written in a form sug-

The degeneracy for elastic collisions is partially broken, Withgestive of Green-Kubo relations for normal fluigg],
some zero eigenvalues going tdy#2. The corresponding

. . nme¢ t s * Lok !
eigenfunctions are = 1—U0°() ds'(Dj;®y;(s)ye s, (122
0

\

X1=4+vd, In ¢("), x2=-3-vd, In $(v"),

(120) n€ t S "
= ';0( ) f ds(s" - dy(s))et2es’ (123
Xn=0nd, IN dv*), N=3,45. (121) 0
* . . 3 s
Fora=1, d,In ¢(v")=-2v and y,, become linear combina- _T mfvo(t)f T () — b (e
tions of 1v",v". This suggests that Eq&l19—(121) pro- M= KT 0 ds'(S - [D4(s') = P5(s)])-

vide the hydrodynamic modes far<1 as well. This is 124
confirmed by noting that these eigenvalues are the same (124

as those of the macroscopic balance equations in the lonphe brackets denote an average over the HCS in the dimen-

wavelength limit. sionless velocities,
The velocity dependence of the hydrodynamic modes for

a<1 is complicated due to their definitions in terms of the
HCS distribution. An advantage of the Gaussian models is
that this distribution is known explicitly and the construction , ) .
of the eigenfunctions is straightforward. All of these modesFUrthermore, the dependence on the dimensionlessdiisie

are characterized b, In ¢. This has already been shown in defined by

Fig. 3 for =0.8. Fi_gu_re 9 shows the same data but with the X(s) = eoxX(V"). (126)

result for the velocity independent collision frequency model

included. The dashed curve in each case represents the elddie averages in these expressions therefore have the inter-
tic =1 limit. For the velocity independent collision fre- pretation of time correlation functions. The momentum flux
quency y; approaches a constant for large due to the DIJ and heat fluxS" are the same as in E¢94). They are

(X) = f dv' (v HX(V'). (125
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fluxes in the usual sense of the velocitytimes linear com- HCS distribution function, so this asymptotic behavior is
binations of the summational invariantsvl,v™. In the elas- even more important. The Gaussian model with velocity de-
tic limit the other functionsl):1 also have these forms pendent collision frequency incorporates this behavior and in
. . . . . addition gives a quite good quantitative representation of the

®; —0, @y =Dy, ;=S (V). (127 Hycs distribution function for small velocities as well. This is
The resulting expressiond22 and (123 for 7 and « are illustrated in Fig. 1 whereg(a) shows significant improve-
then precisely the low density limits of the usual Green-ment over the velocity independent case. As a consequence
Kubo expressions as time integrals of flux autocorrelatiorthe transport coefficients(«) andu(«) are also significantly
functions[34]. improved due to their dependence oi( ).

Fora<1 the functionsI)i* are no longer simply related to The second feature of a nonsymmetric Gaussian provides
fluxes of the summational invariants. Instead they can b&n additional parameter beyond the collision frequency that
written as fluxes for the hydrodynamic modes defined abovéan be chosen to optimize the quality of all transport coeffi-

.. N cients. Here they are chosen such that the shear viscosity is
D=V (X1t x2) 32X (128)  accurate for both the constant collision frequency and the
velocity dependent collision frequency for all values of the
. 1 1 . restitution coefficient. The other transport coefficients are ac-
@, = E(UiXi ~ 3oV 'X)* 1=3,45 (129  cyrate in the elastic limit, including the correct Prandtl num-
ber for both cases. For inelastic collisions the agreement with
1, x Boltzmann remains excellent for the velocity dependent col-
P3=5(V X2+ ), (130 lision frequency case for alk. This is a primary improve-
where y is the vector whose components agg n=3,4,5. ment of the Gaussian model. In contrast, the transport coef-
This relationship of the “fluxes” to the hydrodynamic modesficients from the Maxwell model are quite different from
is the same as for a normal gas. Only the forms of the hythose of the hard sphere Boltzmann equation, and the other
drodynamic modes change far<1. However, since these Kinetic models using a symmetric Gaussian all give the
modes are significantly different at large velocities, it is ex-Wrong Prandtl number.

pected that their effect on the transport coefficients may be An advantage of most kinetic models is their structural
important. simplicity. They can be solved exactly for many states as

functionals of a few moments of the distribution. These mo-
ments still obey complicated nonlinear integral equations but
the problem is simplified to the extent that exact results are
The objective here has been to describe a simple but reften possible for states with sufficient symmetry. An ex-
alistic kinetic model for the hard sphere Boltzmann equationample is given here for homogeneous states where the exact
The new features of the Gaussian kinetic model defined isolution is obtained in terms of the parameters of the Gauss-
Sec. IV relative to previous models a® a velocity depen- ian gain term,A(s) and B;j(s), which in turn are defined in
dent collision frequency(2) two free parameters for a good terms of the moment#,(s). It is shown that an arbitrary
description of transport coefficients, ar8) applicability to  homogeneous initial condition evolves after a few collisions
both elastic and inelastic collisions. For elastic collisions ando a universal scaling solution, the HCS. Such behavior is
constant collision frequency it reduces to the ES kineticexpected also from the hard sphere Boltzmann equation but
model [17,7], while for inelastic collisions and symmetric its complexity has precluded a proof to date. It is useful also
Gaussian it reduces to the BMD modé&B]. For elastic col- to have the explicit representation of the HCS for other pur-
lisions, constant collision frequency, and symmetric Gaussposes as well. Here it has been noted that the hydrodynamic
ian it becomes the usual BGK modgl]. It is also shown modes for weakly inhomogeneous states are described by
here that the Gaussian model for constant collision frequencgigenfunctions of the linearized Boltzmann collision opera-
can be “tuned” to represent well the more complicated Max+tor. These eigenfunctions are determined from the HCS and a
well models. One motivation for the generalization of a ki- contrast with the corresponding eigenfunctions for elastic
netic model to include a velocity dependent collision fre-collisions was made possible by the explicit results for the
quency is a more accurate description of the overpopulatioflCS for the kinetic model. Significant differences are ob-
at large velocities for granular gases. The decrease of theerved between the cases of the velocity independent and
distribution function for large velocities in the simplest statevelocity dependent collision frequency, due to the qualitative
of HCS is algebraic for any model with a constant collisiondifferences in the large velocity dependences of the HCS.
frequency, including the Maxwell model. In contrast, the de-This is also related to the Hilbert space for formulating the
cay found from the hard sphere Boltzmann equation is expoeigenvalue problem for the linearized kinetic equation. The
nential due to the velocity dependence of the loss term in theatural scalar product is an integration over the velocities
collision operator. This qualitative difference may be impor-weighted by the HCS distribution function. Due to the alge-
tant for driven states as well. Although this asymptotic be-braic decay at large velocities for the constant collision fre-
havior occurs only for extremely large velocities it can havequency caségincluding the Maxwell mode| polynomials of
an effect on the moments of the distribution function. Inhigh degree do not exist in this spai®l]. This restriction
addition it has been shown in Sec. VI that the hydrodynamiaoes not occur for the hard sphere Boltzmann equation or the
modes and the Green-Kubo fluxes depend on the log of th&aussian model with velocity dependent collision frequency.

VII. DISCUSSION
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It is of some interest to study any qualitative differences in

the spectrum of the linearized collision operator and any con- G,
sequences for the existence of hydrodynamics. The Gaussian J du(v) gr,vV,ijf)y=| G, |. (A2)
kinetic model provides a tractable context to address this Zm\2 G
issue. 2 3ij

The most interesting states for experimental purposes are L )
quasi-steady-states for systems driven at the boundaries. FP€ measure for the velocity integration has been chosen to

states of high spatial symmetry the kinetic model again ofinclude the velocity dependence of the collision frequency.
fers the advantage of an exact solution as a functional of lo4/'c0TPOrating these constraints with Lagrange multipliers
degree moments. An example is that of uniform shear flowNd Minimizingl[g] leads directly to the Gaussian form

where an exact solution for the distribution function has been -

obtained in the case of a symmetric Gaus$&5). The result oV, tlf) = expi=Xs = Ap v = Agjuivy), (A3)
applies even for large shear rates so the rheology of states faere the coefficients,, are determined in terms &, from
from equilibrium can be studied directly. The GaussianEq. (A2). Thus, if the only known or important exact prop-
model described here also can be solved exactly for uniforrerties of the gain term are the moments in E&R) then Eq.
shear flow and will be given elsewhere. Vibrated systems(A3) is a “natural” choice for the model.

with and without gravity, have been studied on the basis of It may be useful to recall thay(r,V,t|f) is exactly
the Boltzmann equation using Monte Carlo simulation meth-Gaussian forf= Maxwellian ata=1. It has been verified
ods leading to a number of important results bearing on exnumerically that this property remains true to an excellent
perimentge.g., boundary layer86], dependence of velocity approximation fora<1 as well, with only the parameters of

distribution on the distance from the driving wgll7], sym-  the Gaussian changing. This gives further support for the
metry breaking[38]). The Gaussian kinetic model may be choice(A3).

simple enough for a complementary analytical study of such
problems.

In summary, the work here has extended earlier kinetic
models to bring closer correspondence with the Boltzmann
equation for the HCS and small spatial perturbations of that The formal solution to the Gaussian model kinetic equa-
state. The price for these improvements is an increased confion (49) is
plexity of the model, although this has not been an impedi- L L
ment for the simple states considered here. It remains to  f'(p",s) = WAL B Vy)+v (V)Isf* ()" ()
demonstrate significant new results for more complex states, s
not already addressed by the simpler existing models. + J ds’e—[(1/2)£*<3+v*-Vv*)+v*(V*>]<S—S'>V*(v*)

0

APPENDIX B: FORMAL SOLUTION FOR
HOMOGENEOUS STATES

xg @",s). B1
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Next introduce
APPENDIX A: MOTIVATION FOR GAUSSIAN MODEL . oo —
. L X(v',9) = W2 WX(p'9), (B4)

The Gaussian model results from an approximation to the o

gain contribution to the Boltzmann collision operator, de-so thatX(v",s) obeys the equation
noted byg(r,V,t|f) in Eq. (30). The specific choice of a
Gaussian can be interpreted as resulting from maximizing 3. UDES Vy * ( \ am (U2 S ¥y |3 =
the information entropy[g], dst o0 +e viv)e X=0.

(B5)
101= [ gV, In gV, du(v) =dvitw),

(A1)

among the class of functions whose weighted moments of
degree 2 are specified: this equation becomes

From the identity

ML Ty E(p")e WS Ty = F(el2E8)") (B6)
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(as+ gg* + v*(e<1/2>fsv*))iz 0. (B7)

This can be integrated directly and inserted in E84) to
give

S
x(v*,s):e—(a/z)g*se—(l/z)g*w*-Vv*exp<_ f ds’v*(e(l/z)g*s’v*)>
0
XX(v")

S
=g ¥2¢ Sexp(—J ds v ("¢ s'v*))
0

X X(e" 128 s, (B8)

The formal solution to the kinetic equation becomes
("9 = e @EK (", 9F (245", 0)
S
+ f ds e GRESK(y", ) (6725 y")
0

xg (66725 s-8), (B9)

S
K(v*,s)=exp<—f ds’v*(e‘(l’z)gs'v*)) (B10)
0

It is interesting to note that no use of the explicit form or

PHYSICAL REVIEW E 69, 051301(2004)
ol dx
71/ (X')).

Next eliminate 2"(v")/¢" by noting it can be generated by
differentiatingK,

* 1 *
M * * v *
( 3):—47Tf dv'| 2 ,, f dx3v"(x)
M3 0 év 0

. dK(v",x)
Xg (X,°) &

= - 47Tfo dXXZV (X)g (X,OO)

1 _
s, K",
><J a'| 2 ., [T
N év dv

= 477J0c dx@v’ (X)g" (x,)

0

has been used. So, this result applies to the Boltzmann equa- 3X 5”
tion as well.
* 0 O
M; .
APPENDIX C: MOMENT CONDITIONS =l . T t4m] dv | 4.

The HCS for the Gaussian model is given by Esp),
e f ds' e BRETK W, 8) v (€ 24y
0

Xg*(e—(1/2)£*5’v* ,00). (Cy
This is restricted by the moment conditio(&0),
* 1

M]_ * * * *
( *)=fdv 2 o v (V)e(v).
M3 —-U
3
These conditions can be verified by direct integration,
M 1 "
( 1) :Jdv* 2 ., v*(V*)J ds e BRISK(L" )
M3 Y 0
3
X (e V2L )g (e VLS o)
1 .
* 1 v *
:Jdv 2 ., —3f dxxv’ ()
§U v 0

(C2)

2

4

xg"(x,%) 5 v (V)K" X),

with the notation

% f "oy (0g (X,0)K " X), (C3)
0

where use has been made of Efl). The second term of
Eq. (C3) can be recognized as momentsdii") to give the
desired result

. . . 0 "
M M . . M
(M) 1) [l o foon=(1).
(C4
The last equality follows from Ed7) in the form
1 1
(1>:fdv* gv*z d(V'). (C5)

This confirms the consistency of moment conditiofa®)
and(51).

The two equationgC5) fix the values ofA” andB™! in
the Gaussian mode#9). A convenient representation is
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* * x v* * L2, « 5g(r,V,t|f)
dv'v f dxxXv’ (x)eB YK (v ,X fdv’ PP EE— fOr V't
3_ fo 0 ( ') of(r,v,t) |0 ( )
27 .. ) AP
f dov ﬂf dods (e K" 0 =g(r,V,tf?) JdV’ 2InA(r.t £
0 0 of(r,v', 1) =0
SBY(r t|f
or X(r,V',t)—ViVdev’ —"(—|)
* of(r,v',t) =£(0)
“ * * 3 * v * *— T x
O:f dv (v --v '1)f dx@r’ (e FKw",x). L
0 2 0 xfD(r v 1) |. (D5)
(Co)
This determines8”. Next A" is obtained from Using the definition of®y; in Eq. (39) gives
» : 8B (r t|f) ( SB(r ,t|f)
oy _ 8T — oy BLZ /I LEAY Y- S PR (0) il M S VRN (V)
S R ) SR R SRR TR
9 (18Bu(rtf) ()
(C7) :__2<_ e /I SCRY
Bi \ 3 of(r,v',1) nm

Finally, with A" and B"! known, the moments are deter-

: (D6)
mined from Eq.(51),
. Then Eq.(D5) becomes
( My )— J av'|2 ., [F(V)AeB 7 (Cco s9(r.V.1lf)
* * - * v . r t
M3—¢ U7 fdv’; fO(r,v't
3 3 Sf(r,v',t) | =0 (rVY
SIn A(r t|f
:g(r’V,t|f(0)) fdv’ —( - | ) f(l)
APPENDIX D: LINEARIZED COLLISION OPERATOR SE(r,v',t) | =0
The collision operator for the Gaussian model is <(E D) VS f v’ OBy 1,1/f) (0
, , Bik 5f(l’,V/,t) f:f(o)
J(r,v[f(t)) = = o(r,V,0)[f(r,V,1) —g(r,V,t|f)]. (D1) oy(a)
o - X1V 1)+~ Dy (V)
The distribution function is expanded as nnYBy,
f(r,v,0=f0r,v,n+fPr,v,n+---, (D2 X fdv'Dij(V’)fﬂ)(r,v',t)}. (D7)
g(r, V. 4f) :g(r,V,t|f<°)) +f dv’ ay(r.V.tf) The expansioniD2) leads to a corresponding expansion for
St v, 1) =0 the moments
XED(r V) + - (D3)
M,
The linearized collision operator is therefore _f
M, [=] dv
SJ(r,v|f(t M3 —m(v - u)?
Ef(l):—fdv’ H R(AVARY 2
RALEL Xw(r, VOO,V 1) + (V0 + -]
= V(r,V,t)[f(l)(r,V,t) M\ [ ME
=IMQ [+ MP [+ (D8)
sg(r,V tf) M@ MDD
- [dv ————=|  fOr,Vvih . (DY) 3 ®
J of(r,v', 1) | =0
The coefficients  A(r,t|f©@) and  By(r,t[f9)

The second term of ED3) can be made more explicit by =[By(r,t|f%)/3]8;=Bs; are determined fronv'? just as is

N

recalling that the functional dependence gtf,V ,t|f) oc-

done in Appendix C. The remaining part of the moment con-
curs only throughA andBy;:

ditions are
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1 r,V, t|f

VI eﬂzfdwz,//ﬂfdv’ 59(—/“ fO(r, V' 1)

(1) v 3f(r,V lt) f=f(0)
M3’ | = | dv v(r,V,t)

M 1 \2
M3 >m :fde#f“). (D15)

% f dv’ ag(r,V,tf) fO(r V1) The second equality follows from E¢D9) and allows these
St(r,v',t) | =0 o terms to be represented as a projection onto the subspace
(DY) spanned by, }:
o,V tf) @ ,
The terms on the right side of E¢D7) can be identified as v, VoY) | dv ———— fH(r,v1)
6f(ryv yt) £=f(0)

an expansion in terms of polynomials of degree 2 in the
velocity. To do so, first define a Hilbert space with scalar ! y
product =Prf + P

BZVg(O)Dij f dV’Dijf(l), (D16)

(ab) = f dvig®a'b, gO=g(f®). (D10) whereP is a projection operator,

PX =19y, f dvis, X. (D17)
Next, define the set of functions),},

1 The linearized collision operator of E¢D4) now takes
A =1 the simple form
Ny

e 3 L9 = @ =P)pt® - 290Dy (V) f dv'Dy D).
o | = N—V , (D11) nnB
i 2 (D19
A/ i(VZ - &> The first term represents the fact thathas a null subspace
N3 Ny due to the moment conditions
with normalization constants 1
\%
N;=(1,0), Np=(V,V)=(1V?), Jdv L £fP=0. (D19
) Em\/2
N N N
_ 2_ 2 2_ 2| = 4y _ 2
N3 = ((V N1>’<V N1>) (LV) N, (B12) This is the usual BGK-like operator with a single, infinitely
_ degenerate point in the spectrum for all functions of the or-
These functions form an orthonormal set thogonal subspace. The second term is a projection onto a
specific function in the orthogonal subspace and is the new
(Vo 0) = O (D13)  effect of the asymmetric Gaussian approximation, or the
Equation(D7) may now be written in the form nonzero value oB;.
Finally, noting that
., 8g(r,V tlf) D vy 5
f dv &(r,v’,t) f:f(o)f (r,V ’t) f dVD”D,Jg(O) = Enn']sz, (DZO)
— g(r,V,t|f<°))[e,,¢a(V) " n)r/T(;I;ZD”(V) allows the linearized operator to be written as
Vg(O)Dij(V)de,Dijf(l)
X f dV’Dijf(l)}' (D14) LY =1 -P)pf® - >
JdVDijDijg(O)
The coefficientse, can be determined by taking the scalar
product of this equation witl,: (D21
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