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A kinetic model for the Boltzmann equation is proposed and explored as a practical means to investigate the
properties of a dilute granular gas. It is shown that all spatially homogeneous initial distributions approach a
universal “homogeneous cooling solution” after a few collisions. The homogeneous cooling solution(HCS) is
studied in some detail and the exact solution is compared with known results for the hard sphere Boltzmann
equation. It is shown that all qualitative features of the HCS, including the nature of overpopulation at large
velocities, are reproduced by the kinetic model. It is also shown that all the transport coefficients are in
excellent agreement with those from the Boltzmann equation. Also, the model is specialized to one having a
velocity independent collision frequency and the resulting HCS and transport coefficients are compared to
known results for the Maxwell model. The potential of the model for the study of more complex spatially
inhomogeneous states is discussed.
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I. INTRODUCTION

Many features of granular gases are captured by an ideal-
ized system of smooth, hard spheres with inelastic collisions
[1,2]. During the past decade considerable attention has been
given to this simple system to understand better the mecha-
nisms behind observed qualitative differences between real
gases and those comprised of grains. Among the most pro-
ductive theoretical tools for analysis used is that of kinetic
theory [3], and more specifically at low density, the Boltz-
mann equation[4,5]. In recent years important conceptual
issues, such as the applicability of fluid dynamical equations,
have been clarified and quantitative methods have been de-
veloped for accurate predictions over a wide range of experi-
mental conditions. It is fair to say that the Boltzmann kinetic
theory is now the primary theoretical method for a quantita-
tive description of granular gases.

While there are accurate and efficient numerical algo-
rithms for solving the Boltzmann equation[6], analytic ap-
proximations are more limited and exact solutions nonexist-
ent. Such analytic results are of considerable interest because
they complement numerical solutions with a more penetrat-
ing explication of the dominant mechanisms involved in a
specific application. The mathematical complexity of the
Boltzmann collision operator is the limiting factor in making
progress, so simpler “kinetic models” have been proposed
[7]. This approach has been used with great success for real
gases with elastic collisions where several exact solutions far
from equilibrium have been obtained and shown to be in
semiquantitative agreement with the numerical simulations
of the Boltzmann equation[8,9]. Recent applications of ki-
netic models to granular gases have yielded similar interest-
ing exact results[10–12]. The collision operator for a kinetic
model is constrained to preserve the most important exact
properties of the Boltzmann collision operator, such as a spe-
cial homogeneous solution and the macroscopic balance
equations for mass, momentum, and energy. Otherwise, the

model is chosen for simplicity and tractability. The objective
here is to recall one of the first kinetic models proposed for
granular gases, the Brey-Moreno-Dufty(BMD) model [13],
and to generalize it for both a qualitative and a quantitative
representation of the Boltzmann equation. It will be referred
to as the Gaussian model for reasons that will become appar-
ent.

In the following sections the Gaussian model is defined
and applied to the simplest cases of homogeneous states and
weak spatial perturbations of those states. The motivation for
this work is to provide a tool for a subsequent more detailed
study of spatially inhomogeneous states. For example, recent
results suggest that the spectrum of the linearized collision
operator for a realistic kinetic model could shed important
light on the validity conditions for a hydrodynamic descrip-
tion [14,15]. Also, a more practical means to describe bound-
ary value problems is desired for a more faithful comparison
with experiments. Attention is focused here on spatially ho-
mogeneous states for an isolated system and on transport
coefficients for small spatial perturbations, as a means to
compare and contrast models. A more detailed application to
inhomogeneous states and shear flow will be presented else-
where.

There is extensive current interest in related Maxwell
models. Several exact results have been obtained recently for
the homogeneous state of an isolated system using these
models [16]. In some mathematical respects the Maxwell
models are closer to the hard sphere Boltzmann collision
operator than the model studied here. However, its predic-
tions (e.g., homogeneous cooling state distribution, transport
coefficients) are quite different from those of the Boltzmann
equation as recounted below. In contrast, the Gaussian model
is structurally simpler but with the capacity to give a better
representation of known results for the Boltzmann equation.

The basic results known for the hard sphere Boltzmann
equation are summarized in the following section. The ideas
of kinetic modeling and some existing models are reviewed
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briefly in Sec. III, and the Gaussian model is defined in Sec.
IV. It is an extension and synthesis of two earlier models, the
ellipsoidal statistical(ES) model [17] introduced for gases
with elastic collisions to yield the correct Prandtl number,
and the BMD model noted above for inelastic collisions. The
model is constructed to describe both elastic and inelastic
collisions, retain a realistic velocity dependent collision fre-
quency, and to yield the correct Prandtl number for accurate
transport coefficients.

Also in Sec. IV, the exact solution to the Gaussian model
is obtained for an arbitrary initial homogeneous state. It is
shown that this class of solutions approaches a universal ho-
mogeneous cooling solution(HCS) on a time scale of the
order of several collisions. Hence the HCS is the special state
for homogeneous granular gases analogous to the Maxwell-
ian for normal gases. The properties of the HCS distribution
are shown to be similar to those for the Boltzmann equation
at both small and large velocities. In particular, similar ex-
ponential decay occurs at large velocities. The special case of
a velocity independent collision frequency is studied as well.
In that case the HCS is the same as that for the BMD model.
The Maxwell models also have a velocity independent colli-
sion frequency. In this special case the Gaussian model HCS
has properties quite similar to those of the Maxwell models,
including algebraic decay for large velocities.

The Chapman-Enskog solution to the Boltzmann equation
for small spatial variations around the local HCS applies for
the models as well. To Navier-Stokes order this solution is
characterized by three transport coefficients. These transport
coefficients are compared for the various models and the
Boltzmann equation in Sec. V. The Gaussian model with
velocity dependent collision frequency provides an excellent
representation of the hard sphere Boltzmann results, over a
wide range of inelasticity.

The HCS is the reference state for linear hydrodynamics.
Consequently, knowledge of the exact form of this distribu-
tion function from the kinetic models provides some addi-
tional insight there as well. This is illustrated in Sec. VI
where the velocity dependence of the hydrodynamic modes
[15,14] is calculated. The relationship of these modes to the
fluxes in Green-Kubo expressions for transport coefficients is
also noted. Finally, the results presented here are summarized
in the last section and some other interesting applications of
the kinetic model are suggested.

II. HARD SPHERE BOLTZMANN EQUATION

The system considered is composed ofN smooth hard
spheres of diameters in a large volumeV. If the density is
sufficiently small,Ns3/V!1, the one-particle distribution
function fsr ,v ,td for the number of particles with positionr
and velocityv at time t is determined from the Boltzmann
equation[4,5]

S ]

] t
+ v · =D fsr ,v,td = J„r ,vufstd…. s1d

The Boltzmann collision operatorJ has the form

J„r ,vufstd… ; − nsr ,t,vdfsr ,v,td

+E dv1E dŝKsŝ ·g8da−1fsr ,v8,t,dfsr ,v18,td,

s2d

whereV =v−u andu is the average flow velocity defined by
Eq. s7d below. The first term on the right side represents the
loss of particles with velocityv at a rate due to the collision
frequencynsr ,V,td,

nsr ,V,td =E dv1E dŝKsŝ ·gdfsr ,v1,td. s3d

The second term of Eq.s2d represents the gain of particles
with velocity v, wherehv8 ,v18j are the “restituting” velocities
that lead tohv ,v1j following a smooth, inelastic hard sphere
collision:

v8 = v − 1
2s1 + a−1dsŝ ·gdŝ, v18 = v1 + 1

2s1 + a−1dsŝ ·gdŝ.

s4d

Here, ŝ is a unit vector along the line of their centers, and
g=v−v1. The parametera is the coefficient of restitution,
0,aø1, describing the fractional change in the normal
component of the relative velocitysŝ ·g8=−aŝ ·gd and hence
the inelasticity of collisionssa=1 corresponds to elastic col-
lisionsd. The kernelKsŝ ·gd is proportional to the flux of
particles times the differential cross section and is given by

Ksŝ ·gd = s2Qsŝ ·gdsŝ ·gd, s5d

whereQ is the Heaviside step function.
The most important properties of the collision operator

are those that result from the microscopic balance equations
for mass, momentum, and energy in a two-particle collision.
For the collision rules(4) it follows directly thatJ has the
following exact properties:

E dv1
1

v

1

2
msv − ud22J„r ,vufstd… =1

0

0

−
3

2
nTz2 , s6d

wherem is the mass,n is the density,T is the temperature,
andu is the macroscopic flow velocity:

1
nsr ,td

nsr ,tdusr ,td
3

2
nsr ,tdTsr ,td 2 =E dv1

1

v

1

2
msv − ud22 fsr ,v,td. s7d

The two zeros on the right side of Eq.s6d correspond to
conservation of mass and momentum. The last term results
from nonconservation of energy and implies the cooling
equation for homogeneous states:

T −1]tT = − z, s8d

wherez is the “cooling rate,”
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z = s1 − a2d
mps2

24nT
E dvE dv1 g3fsr ,v,t,dfsr ,v1,td. s9d

It is easy to verify from Eq.(6) that there is no spatially
homogeneous steady state for the isolated system, in contrast
to gases with elastic collisions. Instead, there exists a special
solution, the HCS, which is assumed to be approached in a
few collision times by all homogeneous initial conditions. It
has a scaling property such that the dependence on time oc-
curs only through the temperature:

fHCSsv,td = nv0
−3stdfsv*d, v* = v/v0std, v0std = Î2Tstd/m.

s10d

In the following v0std will be referred to as the thermal ve-
locity in analogy to a gas with elastic collisions. Substitution
of Eq. s10d into the Boltzmann equation leads to a time in-
dependent equation forfsv*d that must be solved self-
consistently with the determination ofz from Eq. s9d,

1

2
z*S3 + v* ]

] v* Dfsv*d = J*sv* ufd, z* ;
z

n0
, J* =

J

n0
,

s11d

wheren0 is an average collision frequency

n0std =
16

5
ns2Îp

2
v0std. s12d

Because of the scaling property offHCS both z* and J* are
independent of time. This problem has been studied in
detail in recent years and only a few results will be quoted
here. Forv* ø2 the solution to Eq.s11d can be expanded
in Sonine polynomials about a Maxwellian with the result
f18g

fsv*d → p−3/2e−v*2F1 +
csad

4
Sv*4 − 5v*2 +

15

4
DG , s13d

with

csad → cBsad =
32s1 − ads1 − 2a2d

81 − 17a + 30a2s1 − ad
. s14d

The subscriptB has been included oncBsad here to distin-
guish the value determined by the hard sphere Boltzmann
equation from that for the models introduced below. The
accuracy of the representations13d at smallv to within a few
percent for alla has been confirmed by Monte Carlo simu-
lation f19,20g. The cooling rate calculated from Eq.s13d is
f21g

z* =
5

12
s1 − a2dS1 +

3

32
cBsadD . s15d

For asymptotically large velocitiesfsv*d has a qualitatively
different behaviorf18g,

fsv*d → Ae−s2bB/z* dv*
, bBsad =

5Î2p

16
. s16d

The constantbB arises in the large velocity limit of the col-
lision frequency,

n*sV*d ;
nsv,td
nostd

→ bBv* . s17d

Thus the origin of the exponential decay is the asymptotic
velocity dependence of the collision frequency. The over-
population in the tail of the distribution, relative to the
Gaussian at small velocities, also has been confirmed for
v* ù2 for all a by Monte Carlo simulationf22,20g. These
and the transport properties of Sec. V are the primary results
known for the Boltzmann equation with inelastic collisions.
They are the main features captured by the kinetic model
proposed here.

III. AN OVERVIEW OF KINETIC MODELS

It is remarkable that over a century after Boltzmann wrote
his kinetic equation for a low density gas, the content of that
equation remains masked by its complexity. Certainly, a
great deal is known about solutions near the equilibrium state
but the mechanisms controlling nonlinear transport far from
equilibrium are still poorly understood. Significant progress
has been made in the past 20 years with the development of
direct simulation Monte Carlo methods by Bird[6]. This
numerical tool is exceptionally powerful and provides access
now to a wide range of nonequilibrium states for both elastic
and inelastic collisions. For more detailed analytical insight,
kinetic models have provided a parallel powerful tool in rar-
efied gas dynamics. The objective of this section is to give a
brief summary of the concept of kinetic models and their
extension to inelastic collisions. Although the discussion is
limited to the Boltzmann equation, it is noted that the same
ideas have been applied as well to its dense fluid generaliza-
tion, the Enskog kinetic equation, for both fluids and solids
[23,24].

A. Maxwell model

The results quoted in the preceding section for the HCS
are accurate but not exact. To obtain a more penetrating in-
vestigation of this and other solutions a simplified version of
the Boltzmann equation called the Maxwell model has been
proposed[25] whereby the kernelKsŝ ·gd is replaced by a
velocity independent kernelKsr ,td. Then Eq.(3) implies that
the collision frequency also is independent of the velocity,
nsr ,td=4pnsr ,tdKsr ,td. The resulting model for the Boltz-
mann collision operator becomes[26]

J„r ,vufstd… → JM„r ,vufstd

; − nsr ,tdF fsr ,v,td −
1

4pnsr ,td
E dv1

3E dŝa−1fsr ,v8,t,dfsr ,v18,tdG . s18d
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The collision frequencynsr ,td is a free parameter of the
model. Its dependence on space and time is due to a possible
functional dependence onfsr ,v ,td. To fix nsr ,td the cooling
rate is calculated directly for the Maxwell model with the
result

zM = 1
6s1 − a2dnsr ,td. s19d

The collision frequency is now chosen to assure that the
cooling rate for the model is the same as that for the hard
sphere Boltzmann equation,zM =z, given to good approxi-
mation by Eq.s15d. This requires the choice

nsr ,td =
5

2
S1 +

3

32
cBsadDn0sr ,td, s20d

where n0 is given by Eq.s12d. This completely fixes the
Maxwell model.

The approximate Maxwell form for the Boltzmann colli-
sion operator does not represent any real kinetics due to scat-
tering by a potential. It is called a Maxwell model because
the property ofK being independent of the velocity follows
for scattering by Maxwell molecules interacting via an in-
verse fourth power law potential. However, the model de-
scribed here retains the collision rules for inelastic hard
spheres, Eq.(4), and therefore is a hybrid not corresponding
to any potential. Still, it provides an interesting and tractable
model for which several exact results have been obtained
recently.

The HCS has been studied for this Maxwell model as
well. For small velocitiesfsv*d again has the form of Eq.
(13) except that the coefficientcsad is replaced by[26]

csad → cMsad =
12s1 − ad2

5 + 3as2 − ad
. s21d

This is significantly different from the small velocity depen-
dence of the hard sphere Boltzmann equation, suggesting
that the Maxwell model does not reproduce quantitatively
the HCS solution for hard spheres. Furthermore, the differ-
ence is even qualitative at larger velocities. The exact
asymptotic behavior from the Maxwell model is

fsv*d → Av*−ksad. s22d

Thus there is algebraic decay for the Maxwell model in con-
trast to the exponential decay for hard spheres. The exponent
ksad is the solution to a transcendental equationf27,28g

1 +
1

12
s1 − a2ds3 − kd = S1 + a

2
Dk−3GSk − 2

2
D

2GS k

2
D +E

0

1

dx

3F1 −S1 −
1

4
s1 − ad2Dx2Gsk−3d/2

.

s23d

The behavior ofcMsad andksad is illustrated in the follow-
ing section.

The transport coefficients associated with Navier-Stokes
hydrodynamics also have been calculated for the Maxwell
model [26]. The agreement with those from the Boltzmann
equation for hard spheres is only qualitative(see Sec. V).
While the Maxwell model allows interesting and exact solu-
tions, it does not appear to provide a reliable representation
of the Boltzmann equation for hard spheres and therefore the
results obtained from it must be interpreted with some care.

B. Other kinetic models

The Maxwell model, while simpler than the Boltzmann
equation, is still quite complex and even for the HCS the
exact distribution function has been calculated only in one
dimension. Historically, for normal gases, a number of sim-
pler kinetic models have been applied with great success.
More recently, these models have been extended to granular
gases with a similar success in applications. To explain them
generically, it is useful to rewrite the Boltzmann equation(1)
to make the effects of cooling explicit[29]:

S ]

] t
+ v · =D fsr ,v,td −

1

2
z =v · sV fd = J8„r ,vufstd…,

s24d

with

J8„r ,vufstd… = J„r ,vufstd… − 1
2z =v · sV fd, s25d

whereV =v−u is the velocity relative to the average flow.
Then the conditions6d becomes

E dv1
1

v

1

2
mV22J8„r ,vufstd… = 10

0

0
2 . s26d

In addition, there is a null space forJ8(r ,vufstd)

J8„r ,vuf0std… = 0. s27d

The conditionss26d and s27d are the same as those for the
conservation laws and the equilibrium state, respectively, for
elastic collisions. More generally, Eq.s27d defines the HCS
in agreement with Eq.s11d. These two sets of conditions are
necessary for the macroscopic balance equationssprecursors
to hydrodynamicsd and the “universal” homogeneous state
f0. The basic idea of kinetic models is to replace the actual
Boltzmann collision operator by a simpler structure, while
preserving the propertiess26d and s27d.

There are many ways that a kinetic model can be con-
structed with these constraints. Perhaps the simplest are the
BGK model(s) [7]:

J8„r ,vuf0std… → − nsr ,tdffsr ,v,td − f0sr ,v,tdg. s28d

Clearly, Eq.s27d is satisfied and the conditionss26d are im-
posed by requiring that the relevant moments off and f0
should be the same:
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E dv1
1

v

1

2
mV22ffsr ,v,td − f0sr ,v,tdg = 10

0

0
2 . s29d

This implies thatf0 is a functional off so the apparent sim-
plicity of Eq. s28d is misleading. For elastic collisionsf0 is
taken to be the local Maxwellian for consistency with the
known equilibrium state. In the case of inelastic collisions, it
would seem appropriate to choosef0 as the HCS distribution
from the Boltzmann equation. However, since this is not
known it is more common to choose againf0 as the local
Maxwellian. As described in the preceding section, this is a
reasonable first approximation to the HCS if the velocities
are not too large. However, it precludes use of the kinetic
model to study the HCS itself. The collision frequencynsr ,td
is a free parameter of the model, usually chosen to fit one of
the transport coefficients. On dimensional groundsnsr ,td
~nsr ,tdT1/2sr ,td and therefore also a functional off.

The Chapman-Enskog solution to the BGK kinetic equa-
tion for inelastic collisions has been obtained to derive the
associated hydrodynamic equations to Navier-Stokes order
(see Sec. V) [21]. The dependence of all transport coeffi-
cients on the restitution coefficienta is in good semiquanti-
tative agreement with that for the Boltzmann equation. How-
ever, the model suffers from the same well-known problem
for elastic collisions of an incorrect Prandtl numberhCp/k,
whereCp=5kB/2m is the specific heat per unit mass,h is the
shear viscosity, andk is the thermal conductivity. Since the
BGK model has only one parametern the absolute value of
either the shear viscosity or the thermal conductivity is
wrong by a factor of<2/3. This can be corrected by choos-
ing for f0 a more general Gaussian, with an additional pa-
rameter leading to the ES model for elastic collisions[17].
BGK models of this type for granular gases have been dis-
cussed recently by Astillero and Santos[30].

A related but different kinetic model attempts to represent
more directly the gain term of the Boltzmann collision op-
erator[13]. Equation(2) is written as

J8„r ,vufstd… ; − nsr ,V,tdffsr ,v,td − gsr ,V,tufdg

− 1
2z =v · sV fd. s30d

The gain functionalgsr ,V ,tufd is now chosen for conve-
nience and simplicity to define the model, but restricted by
the exact conditionss26d and s27d.

In contrast to the BGK model, the condition(27) now
provides an equation that determines a nontrivial HCS solu-
tion. The simplest choice forgsr ,V ,tufd is again a Maxwell-
ian, but with the temperature modified to account for the
extra term on the right side of Eq.(30). For simplicity, ap-
plications of this kinetic model to date have also chosen a
velocity independent collision frequency. In the limit of elas-
tic collisions it reduces to the BGK model.

The HCS solution can be obtained exactly for this model
and, like the Maxwell model, it has algebraic rather than
exponential decay at large velocities. The transport coeffi-
cients for this second model are of comparable accuracy to

those from the BGK model and suffer from the same diffi-
culty of an incorrect Prandtl number. In the following section
the kinetic model based on Eq.(30) is generalized to include
a velocity dependent collision frequency and a Gaussian
form for gsr ,V ,tufd that can accommodate the correct
Prandtl number.

IV. GAUSSIAN KINETIC MODEL

The main objective of the present work is to propose a
synthesis of the BMD and ES models and to extend them to
include a velocity dependent collision frequency. This will
be referred to as the Gaussian model. Like the Maxwell
model, the Gaussian model admits exact analysis in many
interesting cases, but it is simpler and captures more accu-
rately the qualitative features of the Boltzmann equation. In
this section the model is defined and the initial value prob-
lem is solved exactly for spatially homogeneous states. It is
shown that all initial states rapidly approach a universal
HCS. The HCS is then studied and compared with known
results for the Boltzmann equation for hard spheres. Finally,
it is specialized to the case of a velocity independent colli-
sion frequency, for comparison with the HCS for the Max-
well model.

The model is defined by the choice of a Gaussian for
gsr ,v ,tufd in Eqs.(30) [31],

S ]

] t
+ v · =D fsr ,v,td = − nsr ,V,tdffsr ,v,td − gsr ,V,tufdg,

s31d

gsr ,V,tufd = Asr ,tde−ViBij
−1sr ,tdVj . s32d

The scalar functionAsr ,td and symmetric tensorBijsr ,td are
determined in part by the conditionss7d,

E dv1
1

v

1

2
mV22nsr ,V,tdgsr ,V,tufd =1

M1

M 2

M3 −
3

2
nTz2 ,

s33d

whereMi are moments of the distribution function, weighted
by the collision frequency,

1M1

M 2

M3
2 =E dv1

1

v

1

2
mV22nsr ,V,tdfsr ,v,td. s34d

The choice of a Gaussian is primarily for convenience and
simplicity. However, it can be understood also as the result
from information theory to determine a function when only
the moments in Eq.s33d are specifiedssee Appendix Ad. It
follows directly that
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M 2sr ,td = M1sr ,tdusr,td. s35d

For the special case of constant collision frequency these
become

A → nsdet pBd−1/2, M 2 → M1u,
1

3
TrB → T

m
, s36d

so the coefficients of the Gaussian are related to the density,
temperature, and flow velocity. This also illustrates that the
elements ofB are not fully determined by the moment con-
ditions s33d.

It is useful to divide the matrixBij into a part proportional
to the unit matrix plus a traceless part:

Bij = Bdi j + B̃ij , B̃ij = sBij − Bdi jd, B = 1
3Bkk. s37d

In the following a tilde above a matrix will be used to denote
its traceless part. The special case of Eq.s36d shows that the
trace ofBij is proportional to the temperature and therefore a
linear functional off. It is reasonable to choose the remain-
ing elements ofBij also to have a linear relationship tof.
Furthermore, it is required that this traceless part should van-
ish at f0, the solution to Eq.s27d, which should be isotropic
sto agree with the Boltzmann equationd,

B̃ij =E dvU dB̃ij

dfsvd
U

f=f0

sf − f0d. s38d

Thus, the gaingsr ,V ,tufd is anisotropic only when evaluated
for anisotropic statesf. This is an implicit definition sincef0
is a function ofBij . However, the form is such thatBij be-
comes diagonal when evaluated forf = f0, and hence so does
Bij

−1. This assures thatf0, when it exists, is isotropic. The
trace of Bij is a scalar moment of degree 2sincluding the

weight factornd when B̃ij =0. Consequently, it is suggestive

to takeB̃ij as the traceless part of the moment of degree 2 of
f − f0. The final form forBij is then

Bij = Bdi j +
ysad
nm

E dvDijsVdsf − f0d,

DijsVd = mSViVj −
1

3
di jV

2D , s39d

whereysad is an undetermined dimensionless quantity inde-
pendent of the velocity. The conditions(33) and (39) com-
pletely determine the parametersA,Bij .

It remains to choose the collision frequencynsr ,V,td and
the cooling ratezsr ,td. In principle, these are specific func-
tionals of f in the Boltzmann equation. Here, they are taken
to depend onf only through the temperature and density. The
cooling rate is chosen to be the same as the Boltzmann result
(15),

zsr ,td =
5

12
s1 − a2dS1 +

3

32
cBsadDn0sr ,td, s40d

n0sr ,td =
16

5
nsr ,tds2ÎpTsr ,td

m
. s41d

Similarly, guidance for the choice of the velocity depen-
dent collision frequencynsr ,V, td is obtained from that for
the Boltzmann[see Eq.(3)]

nBsr ,V,td = ps2E dV1fsr ,V1,tduV − V1u. s42d

For smallV this goes to a constant,

nB → ps2nsr ,tdV̄, V̄ ;
E dV1fV1

E dV1f

, s43d

while for largeV it becomes linear inV,

nB → ps2nsr ,tdV. s44d

A representation of the complete velocity dependence for
the Gaussian model, preserving these limiting forms, is ob-
tained from Eq.(42) using a Maxwellian forf:

nsr ,V,td ; xsadnosr ,tdnM
* sV*d, V* =

V − u

v0std
,

nM
* sV*d =

5Î2

16
Fe−v*2

+ s2v* + v*−1d
Îp

2
erf sv*dG . s45d

Herexsad is a second undetermined dimensionless constant.
The particular choice forxsad and the resulting accuracy of
the transport coefficients is discussed in the following sec-
tion. It is found thatxsad is a smooth function ofa of order
unity. This form for n*sv*d has the correct large velocity
dependence of Eq.(17) but with the coefficient differing by a
factor of xsad from the Boltzmann equation.

At this point the Gaussian model has been specified in
terms of the two remaining constantsxsad and ysad. In the
following section it will be shown that the three transport
coefficients at Navier-Stokes order are functions of two in-
dependent collision integrals. The constantsxsad and ysad
are chosen to assure that these two collision integrals are the
same as those from the Boltzmann equation. This leads to a
coupled pair of equations[Eqs. (110) and (111) below] that
are solved numerically. This completes the definition of the
Gaussian model[32].

A. Spatially homogeneous states

In the rest of this section, attention is restricted to spa-
tially homogeneous states. It is shown that for any arbitrary
homogeneous initial condition, the solution goes over to a
universal HCS in a few collision times. For these initial con-
ditions usr ,td=u is constant and by a Galilean transforma-
tion it is possible to chooseu=0. Also from the continuity
equationnstd=n is constant. The temperature obeys the cool-
ing equation(8) which is now written as

DUFTY, BASKARAN, AND ZOGAIB PHYSICAL REVIEW E 69, 051301(2004)

051301-6



T−1]sT = − z* , ds= n0stddt, z* =
zstd
n0std

. s46d

The new time variables represents the average number of
collisions in the timet. It also follows from the definition of
zstd that z* is constant. The temperature therefore has a
simple exponential dependence on the collision number:

Tssd = e−z*sTs0d. s47d

Now consider a general homogeneous initial distribution
and look for solutions to the model kinetic equation in the
dimensionless form

fsv,td = nv0
−3f*sv* ,sd, v* = v/v0std, n* =

nsV,td
nostd

.

s48d

The dimensionless form for the model kinetic equation for
homogeneous states becomes

S]s +
1

2
z*s3 + v* · =v*d + n*sV*dD f*sv* ,sd = n*sV*dg*sv* ,suf*d,

s49d

with

g*sv* ,suf*d = v0
3gsv,tufd/n = A*ssde−vi

* sB*−1di j ssdv j
*
.

The momentM 2 vanishes sinceu=0. The remaining dimen-
sionless moments are

SM1
*ssd

M3
*ssd

D =1
M1std
nn0std
2M3std

3nTn0std
2 =E dv*1 1

2

3
v*2 2n*sV*df*sv* ,sd.

s50d

The parametersA*ssd andBij
* ssd are related to these by

E dv*1 1

2

3
v*2 2n*sV*dA*ssde−vi

* sB*−1di j ssdv j
*
= S M1

*ssd
M3

*ssd − z* D ,

s51d

Bij
* = B*di j + yE dv*Svi

*v j
* −

1

3
di jv

*2Dsf* − f0
*d. s52d

The formal solution to the kinetic equation is found in Ap-
pendix B with the result

f*sv* ,sd = e−s3/2dz*sKsv* ,sdf*se−s1/2dz*sv* ,0d

+E
0

s

ds8e−s3/2dz*s8Ksv* ,s8dn*se−s1/2dz*s8v*d

3g*se−s1/2dz*s8v* ,s− s8d, s53d

whereKsv* ,sd represents the dynamics due to the loss term
alone,

Ksv* ,sd = expS−E
0

s

ds9n*se−s1/2dz*s9v*dD . s54d

The collision frequency is a monotonically increasing func-
tion of the velocity son*sV*dùn*s0d. This gives the inequal-
ity

Ksv* ,sd ø e−n* s0ds. s55d

Sincen*s0d is of order unity, the domain of integration in Eq.
s53d is exponentially bounded fors.1 and for larges the
integral becomes independent ofs. The first term vanishes
exponentially fast and thes independent HCS solution is
obtained:

f*sv* ,sd → fsv*d =E
0

`

ds8e−s3/2dz*s8Ksv* ,s8dn*se−s1/2dz*s8v*d

3g*se−s1/2dz*s8v* ,`d. s56d

It is readily verified thatfsv*d is a stationary solution to Eq.
s49d and hencefsv*d= f0

*sv*d is the unique HCS solution. It
follows from the definition ofB that this distribution be-
comes isotropic on the same time scale as Eq.s54d even if
the initial distribution was not:

Bij
* ssd → 1

3Bkk
* s`ddi j = B*di j .

For the class of homogeneous initial states considered,
this result shows that the HCS is the universal solution after
several collisions. Hence it is the special characteristic solu-
tion for homogenous states analogous to the Maxwellian for
elastic collisions. The result(56) is stronger than theH theo-
rem for elastic collisions in the sense that it implies the ap-
proach to the HCS is pointwise in velocity space. It is inter-
esting to observe that this analysis does not require the
explicit form for n*sV*dg*sv* ,suf*d and so it applies to mod-
els with choices other than the Gaussian. In fact, it applies to
the Boltzmann equation itself although in that case Eq.(56)
is a more implicit functional relationship whose solution
must be proved. The consistency of the moment conditions
(50) and (51) is verified in Appendix C using the explicit
form (56). The functionsA* =A*s`d and B* =Bkk

* s`d /3 are

fixed by the fact thatB̃ij
* =0 and

S1

1
D =E dv*1 1

2

3
v*2 2fsv*d. s57d

The explicit forms for these equations also are given in Ap-
pendix C.

B. The homogeneous cooling state

More explicit properties of the HCS are easily obtained.
First, it can be written in the more convenient form
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fsv*d =
2A*

z*v*3E
0

v*

dxx2 expS−
2

z*E
x

v* dx8

x8

3n*sx8dDn*sxde−B*−1x2
. s58d

The coefficientsA* and B* are determined from Eq.s57d.
Both are smooth functions ofa with the limiting valuesA*

=p−3/2 andB* =1 ata=1. Practical fits for other values ofa
in the range 0.4–1 are given by

A* = 0.547 − 0.274a − 0.094a2,

B*−1 = 1.84 − 0.275a − 0.568a2.

Similarly, fits for xsad and ysad are found from Eqs.s110d
and s111d to be

xsad = 0.533 + 0.156a − 0.302a2,

ysad = 0.906 − 2.666a + 0.724a2.

For smallv* the form offsv*d is Gaussian,

fsv*d → C1 exp −C2v
*2 , s59d

with

C1 =
A*p

3 + p
,

C2 =
s3 + pd
s5 + pdSB*−1 −

3

2s3 + pdn*s0d
Ud2n*

dv*2U
v*=0

D , s60d

p =
2n*sv* = 0d

z* . s61d

The coefficientcGsad in the polynomial expansions13d for
small v* is shown for comparison with the corresponding
Boltzmann hard sphere result in Fig. 1. A practical fit forcG
in the range ofa mentioned above is given by

cGsad = 0.247 + 0.865a − 2.907a2 + 1.793a3.

The model is seen to reproduce quite well the Boltzmann
results foraù0.8 and has the same qualitative behavior
for smaller a. As indicated in Fig. 1, the corresponding
results for both the Maxwell model and the Gaussian
model with velocity independent collision frequencysto
be discussed in the following sectiond are always positive
and much larger. This is the first of several observations
showing an improvement of the model due to the velocity
dependent collision frequency. Figure 2 shows the exact
distribution function reduced by the Maxwellian ata
=0.9. Alsoshown are the results from the polynomial ex-
pansion usingcGsad and usingcBsad for the Boltzmann
equation. It is seen that the polynomial expansion follows
the exact HCS closely and is close to the expansion using
cBsad. The polynomial expansion usingcBsad is very close
to the actual distribution obtained by Monte Carlo simu-
lation of the Boltzmann equation forv* ,2. Therefore the
model gives a good representation of the Boltzmann dis-
tribution for v* ,2. This is found to be true over the whole
range ofa.

The largev* dependence can be obtained as follows. First,
rewrite Eq.(56) as

fsv*d =
Isv* ,cd

v*3 expS−
2

z*E
c

v* dx8

x8
n*sx8dD , s62d

Isv* ,cd =
2A*

z* E
0

v*

dxx2 expS−
2

z*E
x

c dx8

x8
n*sx8dDn*sxde−B*−1x2

=Is`,cd −
2A*

z* E
v*

`

dxx2

3expS−
2

z*E
x

c dx8

x8
n*sx8dDn*sxde−B*−1x2

. s63d

FIG. 1. Comparison of coefficientscGsad, cG1sad, and cMsad
with cBsad. FIG. 2. Comparison of the HCS divided by the Maxwellian for

the Gaussian model and the velocity independent collision fre-
quency model with the Sonine approximation using bothcGsad and
cBsad for a=0.9.
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This form holds for anycøv* . The integral satisfies the
bound

Is`,cd − Isv* ,cd , I0c
2n*scde−B*−1c2

, s64d

whereI0 is a constant. SinceB* is of order unity, this shows
that Isv* ,cd→ Is` ,cd for v* ùc@1 with deviations of order
exps−v*2d. On this scale of velocities the distribution func-
tion becomes

fsv*d → Is`,cd
v*3 expS−

2

z*E
c

v* dx8

x8
n*sx8dD . s65d

This is not yet the exponential decay quoted in Eq.s16d for
the Boltzmann equation. Instead, that exponential decay re-
quires a still larger velocity scale due to the slow approach of
n*sx8d in Eq. s65d to its largex8 limiting form

n*sx8d → bGx8 +
bG

2x8
+ ordere−x82

, s66d

where bG/xsad=bB is the coefficient of the large velocity
limit for the collision frequency given in Eq.s17d. Thus Eq.
s65d behaves as

fsv*d → Is`,cdexpF− S 2

z* bGsv* − cd + 3Dln v*

+
bG

z* S 1

v* −
1

c
DG . s67d

The dominant exponential decay is the same as that for the
Boltzmann equation,s16d, with only the coefficient bB
changed tobG. In fact, a similar analysis of the derivation of
that result for the Boltzmann equation shows that the same
intermediate velocity forms67d applies there as wellswith
bG→bBd. The crossover to pure exponential decay requires
very large velocities. In practical terms fora=0.8 this form
holds to within 0.1% for v* ù6 whereas the exponential
decay has the same accuracy only for much larger veloci-
ties. This is illustrated in Fig. 3 fora=0.8. Thederivative
of the logarithm of the distribution is plotted so that the
initial slope for small velocities is near the Maxwellian
value s−2vd, while the asymptotic large velocity value is
the constant coefficient of the exponential decay
s−2bG/z*d shown as a dotted line. The intermediate cross-
over is seen to be governed by the asymptotic forms65d,

v*]v* ln fsv*d , −
1

v* S3 +
2

z* n*sV*dD . s68d

Figure 3 also shows that this more general form persists to
very large velocities before the final exponential decay is
attained. This crossover form is expected to apply for the
Boltzmann equation as well and should be taken into account
in simulation or experimental attempts to measure the over-
population at large velocities.

To explore the limiting form fora→1 it is useful to in-
tegrate by parts in Eq.(58) to get

fsv*d =
A*

v*3E
0

v*

dxx3e−B*−1x2 d

dx
expS−

2

z*E
x

v* dx8

x8
n*sx8dD

=A*e−B*−1v*2
−

A*

v*3E
0

v*

dx expS−
2

z*E
x

v* dx8

x8
n*sx8dD

3s3x2 − 2B*−1x4de−B*−1x2
. s69d

The second term on the right side vanishes ata=1 leaving
the expected Maxwellian. Fora,1 the second term gives
the exponential decay at large velocities. In order to domi-
nate the first term it is necessary thatv* @1. Since the coef-
ficient in the exponential decay is proportional tos1−ad−1

the relevant domain for overpopulation isv* . s1−ad−1.
Clearly fora→1 this overpopulation becomes physically in-
significant.

In summary, it has been shown that all of the qualitative
features of the HCS for the hard sphere Boltzmann equation
are reproduced by the Gaussian model. In the following sec-
tion it is shown that this quality of the model extends to
transport properties as well.

C. Limiting case: Velocity independent collision frequency

To emphasize the effects of the velocity dependence of
the collision frequency, it is instructive to consider the same
Gaussian model with a velocity independent collision fre-
quency,n*sV*d→nkB

* sad. The HCS for the Gaussian model
then reduces to that of the BMD model. The single parameter
of the model, the constant collision frequency, can be chosen
to fit the shear viscosity or the thermal conductivity. Due to
the choice ofxsad made here the model is tailored to fit the
thermal conductivity. The functional form ofnkB

* sad is given
by Eq.(101) of the following section. The HCS solution(56)
simplifies to

FIG. 3. Illustration of the crossover of the HCS for the Gaussian
model to the intermediate form, Eq.(67), by plotting]v* ln fsv*d for
the HCS, the asymptotic form, and the Maxwellian fora=0.8.
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fsv*d = A*E
0

`

dse−se−3s/p exp f− B*−1e−2s/pv*2g, s70d

whereA* ,B* , M1
* , M3

* , andp are given by

A* = spB*d−3/2, B* =
sp − 2d

p
, M1

* = M3
* = n* ,

p = 2nkB
* /z* . s71d

A change of variables,t=e−2s/pv*2p/ sp−2d, allows this to be
expressed in terms of an incompleteg function:

fsv*d =
p

2p3/2Sp − 2

p
Dp/2

v*− s3+pdgSp + 3

2
,

p

p − 2
v*2D ,

s72d

with

gsx,yd =E
0

y

dte−ttx−1. s73d

Interestingly, the dimensionless distribution function is en-
tirely characterized by the single constantp=2nkB

* sad /z*sad.
Its relationship toa is fixed by the choices of cooling rate
and collision frequency:

p =

8F1 +
33

16
s1 − ad +

19 − 3a

1024
cBsadG

5s1 − adF1 +
3

32
cBsadG . s74d

For small velocities the representations13d applies withcsad
given by

csad → cG1sad =
8

sp − 4dp
. s75d

Figure 1 shows a comparison of the coefficientcG1sad with
that for the Maxwell model given by Eq.s21d. They are seen
to be similar for weak dissipation but the Gaussian model
grows more rapidly with increasing dissipation. Of course,
this difference can be eliminated by a different choice of the
parameters for the Gaussian model for a closer agreement to
the Maxwell model rather than the hard sphere Boltzmann
equation. The accuracy of this polynomial representation is
within a few percent for relatively weak dissipation, compa-
rable to that observed for the hard sphere Boltzmann equa-
tion. It is clear from this figure that the HCS for models with
velocity independent collision frequencies differs from that
of the Boltzmann equation and the true Gaussian model at
small velocitiesssee Fig. 2d. Also, at small velocities, the
HCS in Eq.s70d can be represented as a Gaussian given by

fsv*d → p

3 + p
Ae−fpsp+3d/sp+5dsp−2dgv*2

. s76d

The asymptotic behavior for large velocities is obtained
from Eq. (72) using the limiting form for the incompleteg
function:

fsv*d → p

2p3/2S p

p − 2
D−p/2

GSp + 3

2
Dv*− s3+pd. s77d

This algebraic decay is similar to that of the Maxwell model,
and in contrast to the exponential decay for the hard sphere
Boltzmann equation. This difference is due to neglect of the
velocity dependence of the collision frequency in both mod-
els. Since the exact solution to the Gaussian model is known
the crossover from Gaussian to algebraic forms can be deter-
mined explicitly. Figure 4 illustrates this fora=0.8. The
crossover domain occurs forv* *1, increasing slightly
with decreasinga, with no special intermediate behavior.
Figure 5 shows a comparison of the exponent for the al-
gebraic decay for the Gaussian model,ksad=3+psad, with
the corresponding result for the Maxwell model obtained
from the solution to Eq.s23d. Near a=1 both exponents
diverge ass1−ad−1 but with different coefficients.

In summary, the simple Gaussian model with constant
collision frequency captures semiquantitatively all of the rel-
evant features of the Maxwell model. It has the additional
feature of demonstrating explicitly the solution for all homo-
geneous states to show the rapid transition to the homoge-
neous cooling state, and the detailed features of that state.
The algebraic decay at large velocities implies divergence of
moments of degree greater than some critical value for given
a. The evolution of such moments for given initial states can
be studied in detail to characterize the growing overpopula-
tion of large velocities in the HCS. However, the HCS for
both the Maxwell model and the Gaussian model with con-
stant collision frequency differ qualitatively from the Boltz-
mann result for large and small velocities.

FIG. 4. Illustration of crossover of the HCS for the velocity
independent model from the Gaussian given by Eq.(76) to an al-
gebraic decay, Eq.(77) for a=0.8.
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V. NAVIER-STOKES HYDRODYNAMICS

In this section, states with smooth spatial and temporal
variations in the density, temperature, and flow velocity are
considered. These are states for which a macroscopic hydro-
dynamic description is expected to apply. First, the results of
the Chapman-Enskog method to solve the kinetic equation is
recalled. Next, the transport coefficients obtained from this
solution are identified exactly and in a first Sonine polyno-
mial approximation. Finally, these latter expressions are
evaluated for the model and compared with the correspond-
ing results for the Boltzmann equation.

A. Chapman-Enskog solution

The hydrodynamic equations for spatially inhomogeneous
states are obtained from a special solution to the kinetic
equation generated by the Chapman-Enskog method. The
method is quite general and requires only the properties(6)
for the collision operator. Since these are preserved in the
Maxwell and Gaussian models the results obtained earlier for
the Boltzmann equation[21] apply for the models as well.
The solution is “normal” in the sense that all space and time
dependence occurs only through the hydrodynamic fields. To
first order in the spatial gradients of these fields it is found to
be

fsr ,V,td = f s0dsr ,V,td + f s1dsr ,V,td, s78d

whereV =v−usr ,td is the velocity relative to the flow field.
The first term of Eq.s78d is the solution to the kinetic equa-
tion to zeroth order in the spatial gradients:

1

2
zs0dsr ,td=V · fV f s0dsr ,V,tdg = J„r ,vuf s0dstd…, s79d

where the superscript onzs0d denotes Eq.s9d evaluated with
f s0d. Equations79d is an equation for the velocity dependence
of f s0dsr ,V ,td, which is thesameas that for the HCS distri-
bution of the previous sections. The dependence onr ,t oc-

curs only through the parameters of the HCS. More specifi-
cally, f s0dsr ,V ,td is thelocal HCS obtained from Eq.s10d by
replacing the density, temperature, and flow velocity by their
actual values in the spatially inhomogeneous state:

f s0dsr ,V,td = nsr ,tdv0
−3sr ,tdfsV*d, V* = V/v0sr ,td,

s80d

v0sr ,td = Î2Tsr ,td/m.

The second term on the right side of Eq.(78) is propor-
tional to the gradients,

f s1dsr ,V,td = A · = ln T + B · = ln n

+ Cij
1

2
S] jui + ]iuj −

2

3
di j = ·uD . s81d

fThere are no contributions from the expansion ofzsr ,td to
first order as this vanishes for both the Boltzmann case and
for the models.g The functionsAsV un,u ,Td, BsV un,u ,Td,
andCijsV un,u ,Td are solutions to the integral equations

S− zs0dT]T + L −
zs0d

2
DA = A , s82d

s− zs0dT]T + LdB = B + zs0dA, s83d

s− zs0dT]T + LdCi j = Cij , s84d

with the definitions

AsV un,u,Td = S5

2
+

1

2
V · =VD f s0dV − V f s0d −

T

m
=Vf s0d,

s85d

BsV un,u,Td = − V f s0d −
T

m
=Vf s0d, s86d

CijsV un,u,Td = Vis]Vj
f s0dd. s87d

The linear operatorL is the collision operator expanded to
first order in f s1d,

Lf s1d =E dv8UdJ„r ,vufstd…
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td. s88d

B. Transport coefficients

The Boltzmann equation and all models considered give
the same macroscopic balance equations for mass, energy,
and momentum(or density, temperature, and flow velocity)
because they all imply the properties(6). The Navier-Stokes
hydrodynamic equations follow by evaluating the momen-
tum flux Pij and the heat fluxq in the macroscopic balance
equations using the Chapman-Enskog solution to first order
in the spatial gradients, with the results

FIG. 5. The exponent of algebraic decay for the Maxwell model,
Eq. (23), and velocity independent Gaussian model, Eq.(77) plotted
as a function ofa.
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Pij = − hS] jui + ]iuj −
2

3
di j = ·uD, q = − k = T − m = n.

s89d

The first of these is Newton’s viscosity law, whereh is the
shear viscosity. The second is a generalization of Fourier’s
law, wherek is the thermal conductivity. There is an addi-
tional contribution for granular gases proportional to the den-
sity gradient, with a transport coefficientm, that does not
occur for normal gases. These are identified from the
Chapman-Enskog solution asf21g

h = nTSnh −
1

2
zs0dD−1

, s90d

k =
5nT

2m
snk − 2zs0dd−1s1 + cd, s91d

m =
15T2

2m
s2nm − 3zs0dd−1Sz* s0d k

k0
+

1

3
cD , s92d

with the definitions

nh =
E dV DijsVdLCi jsVd

E dV DijsVdCi jsVd
,

nk =
E dV SsVd ·LAsVd

E dV SsVd ·AsVd
,

nm =
E dV SsVd ·LBsVd

E dV SsVd ·BsVd
. s93d

The functionsDijsVd andSsVd are

DijsVd = mSViVj −
1

3
V2di jD, SsVd = VS1

2
mV2 −

5

2
TD .

s94d

Also, k0=15h0/4m and h0=5smTd1/2/16s2p1/2 are the low
density values of the thermal conductivity and the shear
viscosity in the elastic limit, respectively. The constant
csad is the same as that occurring in the representation
s13d, appropriate for either the Boltzmann equation or the
model being considered. The formss90d–s92d provide the
exact expressions for these transport coefficients.

C. Sonine polynomial approximation

More explicit results require determination off s0d and the
solutions A, B, and Ci j to the linear integral equations
(82)–(84). The Gaussian model allows explicit construction

of these. However, in general it is useful to represent these
quantities as an expansion in a complete set of polynomials
and generate approximations by truncating the expansion. In
practice the leading term in these expansions provides a very
accurate description over the full range of dissipation and
density. The determination off s0d to leading order in the So-
nine polynomial has already been given by Eq.(13). Simi-
larly, the leading contributions to the expansions ofA, B,
andCi j are found to be[21]

1AsVd

BsVd

Ci jsVd
2 → fMsVd1 cASsVd

cBSsVd
cCDijsVd

2 , s95d

fMsVd = nspv0
2d−3/2e−sV/v0d2,

with the coefficients

ScA
cB
D =

2m

15nT3 E dVSAsVd ·SsVd

BsVd ·SsVd D =1−
2m

5nT2k

−
2m

5T3m 2 ,

s96d

cC =
T2

10n
E dVCi jsVdDijsVd = −

T2

n
h. s97d

The distribution functionf s1d in this approximation is ob-
tained from Eq.s81d,

f s1d → − fMF 2m

5nT3sk = T + m = nd ·SsVd +
1

nT2

3h
1

2
S]iuj + ] jui −

2

3
di j = ·uDDijsVdG . s98d

To evaluate the transport coefficients the forms(90)–(92)
are used, with the frequenciesnhsad, nksad, andnmsad deter-
mined in this approximation by

nh =
E dV DijLfMDij

E dV fMDijDij

, nk = nm =
E dV S ·LfMS

E dV fM S ·S

.

s99d

These integrals have been calculated for the Boltzmann
equationf21g

nhB
* =

nhB

n0sr ,td
= S1 −

1

4
s1 − ad2DS1 −

1

64
cBsadD ,

s100d
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nkB
* = nmB

* =
1 + a

3
S1 +

33

16
s1 − ad +

19 − 3a

1024
cBsadD .

s101d

The average local frequencyn0sr ,td is given by Eq.s41d.
The corresponding results for the Maxwell modelf26g are

nhM
* =

s1 + ads4 − ad
6

S1 +
3

32
cBsadD , s102d

nkM
* = nmM

* =
1

24
s1 + ads19 − 11adS1 +

3

32
cBsadD .

s103d

Finally, it is straightforward to perform the same calcula-
tions for the Gaussian model considered here. The form of
the linearized collision operatorL for the Gaussian model is
obtained in Appendix D:

Lf s1d = s1 −Pdnf s1d −
5

2
y

ngs0dDijsVd E dv8Dij f
s1d

E dvDijDijg
s0d

.

s104d

HereP is a projection operator defined by

PX = ngs0dcsE dvcsX, gs0d = gsuf s0dd, s105d

and hcsj is the orthonormal set,

1c1

c2

c3
2 =1

Î 1

N1
1

Î 3

N2
V

Î 1

N3
SV2 −

N2

N1
D2 . s106d

The normalization constantsNi are given in Appendix D.
With these results the frequenciesnhG, nkG, and nmG are
found to be

nhG = x1E dV DijnMfMDij

E dV fMDijDij

−
1

2
y
E dV DijnMgs0dDij

E dV Dijg
s0dDij

2 ,

s107d

nkG
* = nmG

* =

xE dV S · s1 −PdnM
* fMS

E dV fM S2

. s108d

The constantsxsad andysad are now chosen to assure accu-
rate transport coefficients. This is most directly done by re-

quiring that the above frequencies are the same as those from
the Boltzmann equation, i.e.,

nhG = nhB, nkG = nkB. s109d

It follows from Eqs.s90d ands91d that the Prandtl number at
a=1 is nk /nh. So this choice assumes that the Gaussian
model also will have the correct Prandtl number in the elastic
limit. This gives

xsad = nkB
* sad

E dV fM S2

E dV S · s1 −PdnM
* fMS

, s110d

ysad = − 21nhBsad − xsad
E dV DijnMfMDij

E dV fMDijDij
2

31 xsad E dV DijnMgs0dDij

E dV gs0dDijDij
2

−1

. s111d

With these choices, the transport coefficients are given by
Eqs.s90d–s92d, and the only differences from the Boltzmann
values results from the replacement ofcBsad by cGsad in the
expressions fork and m. It should be noted that Eqs.s111d
and s110d are implicit since the right sides depend onxsad
through the collision frequency in Eq.s57d that determines
the parametersA andBij . In practice the calculation ofxsad
is done iteratively. First, the integrals in Eq.s110d are evalu-
ated ata=1 to determine a zeroth-order estimate forxsad.
Then Eq.s57d is used to get a first approximation toA and
Bij . Next, these results are used in Eqs.s111d and s110d to
calculate the first approximation toxsad andysad. The pro-
cess is repeated starting with this first approximation for
xsad. The results reported here are for two iterations, show-
ing good convergence of the process. The fits obtained forx
andy are

xsad = 0.533 + 0.156a − 0.302a2,

ysad = 0.906 − 2.666a + 0.724a2.

For a=1 these results reduce to

nhG
* s1d = nhB

* s1d = 1, nkG
* s1d = nmG

* s1d = nkB
* s1d = 2

3 ,

s112d

xs1d = 448
1153, ys1d = − 1247

1106. s113d

These results define a new kinetic model for normal gases,
extending the ES model to one with a more realistic velocity
dependent collision frequency.

Also, for the special case of a constant collision frequency
the general results reduce to
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xsadnM
* = nkB

* sad, ysad = − 2SnhB
* sad

nkB
* sad

− 1D . s114d

This case is relevant also if one wanted to use the Gaussian
kinetic model to represent the Maxwell model. Then in Eq.
s114d nhB

* sad andnkB
* sad should be replaced bynhM

* sad and
nkM

* sad, respectively. Finally, for botha=1 and constant col-
lision frequency the usual ellipsoidal statistical model is re-
covered:

nhG
* s1d = 1, nkG

* s1d = nmG
* s1d = xnM

* = 2
3, y = − 1.

s115d

Figures 6–8 show the shear viscosity, thermal conductiv-

ity, and the new transport coefficientm for the various mod-
els compared with the Boltzmann equation results. It is seen
that the shear viscosity for the Gaussian model with either a
velocity dependent or velocity independent collision fre-
quency is indistinguishable from the Boltzmann result. The
small differences between the velocity dependent collision
frequency Gaussian model and the Boltzmann results for the
k andm coefficients are due to the differences betweencBsad
andcGsad, and by truncation of the above iteration solution
for xsad after two steps. The differences in the case of the
constant collision frequency models are more pronounced
because as seen in Fig. 1,cG1sad andcMsad are significantly
different fromcBsad for smallera values. These results show
that the Gaussian model has the ability to fit the transport
properties to the hard sphere Boltzmann results for alla,
including the correct Prandtl numberhCp/k=2/3 at a=1.
The other model do not have this capacity and the associated
transport coefficients do not represent as well those from the
Boltzmann equation[26], although they yield the correct
Prandtl number ata=1. Clearly, the inclusion of the velocity
dependent collision frequency in the model allows excellent
agreement with the Boltzmann results.

VI. HYDRODYNAMIC MODES AND GREEN-KUBO
EXPRESSIONS

The simplest solutions to the Navier-Stokes equations are
those for a large system with small perturbations about the
HCS (not the local HCS as considered above). The resulting
five independent solutions are referred to as hydrodynamic
modes. For a gas with elastic collisions, these would corre-
spond to shear diffusion, heat diffusion, and damped sound
propagation. The hydrodynamic modes are more compli-
cated for inelastic collisions but their properties have been
worked out and discussed[21].

The Chapman-Enskog method provides a normal solution
that implicitly presumes the existence of a hydrodynamic
description. A more fundamental study of the context or va-

FIG. 6. Plot of the fitted dimensionless viscosityh* =h /h0 for
the velocity dependent and velocity independent collision frequency
Gaussian models with the Boltzmann and Maxwell model results.

FIG. 7. Comparison of dimensionless thermal conductivityk*

=k /k0 as calculated from the velocity dependent and velocity inde-
pendent collision frequency Gaussian models with the Boltzmann
and Maxwell model results.

FIG. 8. Comparison ofm* =mn/Tk0 as calculated from the
Gaussian models with the Boltzmann and Maxwell model results.
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lidity of hydrodynamics is possible by determining the pos-
sible solutions to the Boltzmann equation for small perturba-
tions of the HCS. The resulting linearized Boltzmann
equation is obtained by substitutingf = fHCSf1+Dg into Eq.
(1) and retaining terms linear inD,

s]s + v* ·=* + L0dD = 0. s116d

The dimensionless units of Sec. IV have been used, and the
linear operatorL0 is defined by

L0D = f−1LsfDd − f−1z0

2

]

] v* sfDd. s117d

For elastic collisions the second term of Eq.s117d vanishes,
f becomes the Maxwellian, andL0 is the usual linearized
Boltzmann collision operator. Its spectrum includes a five-
fold degenerate value at zero. The corresponding eigenfunc-
tions areD→ linear combinations of 1,v* ,v*2. These eigen-
functions are known as the summational invariants because
their sum for two particles is conserved in a two-particle
collision. Thus, fora=1 the eigenfunctions and eigenvalues
of L0 are known and constitute the hydrodynamic modes in
the long wavelength limit.

The identification of the linear combinations of these hy-
drodynamic modes as eigenvalues and eigenfunctions ofL0
has been given recently[14,15] with the results

L0xn = lnxn, s118d

l1 = 0, l2 =
z0

2
, l3 = l4 = l5 = −

z0

2
. s119d

The degeneracy for elastic collisions is partially broken, with
some zero eigenvalues going to ±z0/2. The corresponding
eigenfunctions are

x1 = 4 +v]v ln fsv*d, x2 = − 3 −v]v ln fsv*d,

s120d

xn = v̂n]v ln fsv*d, n = 3,4,5. s121d

For a=1, ]v ln fsv*d=−2v andxn become linear combina-
tions of 1,v* ,v*2. This suggests that Eqs.s119d–s121d pro-
vide the hydrodynamic modes fora,1 as well. This is
confirmed by noting that these eigenvalues are the same
as those of the macroscopic balance equations in the long
wavelength limit.

The velocity dependence of the hydrodynamic modes for
a,1 is complicated due to their definitions in terms of the
HCS distribution. An advantage of the Gaussian models is
that this distribution is known explicitly and the construction
of the eigenfunctions is straightforward. All of these modes
are characterized by]v ln f. This has already been shown in
Fig. 3 for a=0.8. Figure 9 shows the same data but with the
result for the velocity independent collision frequency model
included. The dashed curve in each case represents the elas-
tic a=1 limit. For the velocity independent collision fre-
quency x1 approaches a constant for largev, due to the

asymptotic algebraic decay off. For the velocity dependent
collision frequency it approachesv according to the expo-
nential decay off.

Figure 9 shows that there are significant qualitative differ-
ences from the hydrodynamic modes in the elastic limit
whenv* .2. This is the crossover of the distribution function
to its large velocity form(68). The fact that the hydrody-
namic modes are related to the log of the distribution func-
tion lends new importance to these asymptotic forms.

Related properties are the fluxes appearing in the Green-
Kubo expressions for the transport coefficients. The expres-
sions in the preceding section can be written in a form sug-
gestive of Green-Kubo relations for normal fluids[33],

h =
nm,v0std

10
E

0

s

ds8kDij
* F2,i j

* ss8dle−1/2z*s8, s122d

k =
n,v0std

3
E

0

s

ds8kS* · F3
*ss8dles1/2dz*s8, s123d

m =
T

n
k +

m,v0
3std

3
E

0

s

ds8kS* · fF1
*ss8d − F3

*ss8dgl.

s124d

The brackets denote an average over the HCS in the dimen-
sionless velocities,

kXl =E dv*fsv*dXsv*d. s125d

Furthermore, the dependence on the dimensionless times is
defined by

Xssd = esL0XsV*d. s126d

The averages in these expressions therefore have the inter-
pretation of time correlation functions. The momentum flux
Dij

* and heat fluxS* are the same as in Eq.s94d. They are

FIG. 9. Plot of]v* ln fsv*d for the Gaussian model and velocity
independent Gaussian model and the Maxwellian fora=0.8.
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fluxes in the usual sense of the velocityv times linear com-
binations of the summational invariants 1,v* ,v*2. In the elas-
tic limit the other functionsFn

* also have these forms

F1
* → 0, F2,i j

* → Dij
* , F3

* → S*sVd. s127d

The resulting expressionss122d and s123d for h and k are
then precisely the low density limits of the usual Green-
Kubo expressions as time integrals of flux autocorrelation
functionsf34g.

For a,1 the functionsFi
* are no longer simply related to

fluxes of the summational invariants. Instead they can be
written as fluxes for the hydrodynamic modes defined above

F1
* = v*sx1 + x2d + 1

2x, s128d

F2,i j
* =

1

2
Svix j −

1

3
di jv · xD, j = 3,4,5, s129d

F3
* = 1

2sv*x2 + xd, s130d

wherex is the vector whose components arexn, n=3,4,5.
This relationship of the “fluxes” to the hydrodynamic modes
is the same as for a normal gas. Only the forms of the hy-
drodynamic modes change fora,1. However, since these
modes are significantly different at large velocities, it is ex-
pected that their effect on the transport coefficients may be
important.

VII. DISCUSSION

The objective here has been to describe a simple but re-
alistic kinetic model for the hard sphere Boltzmann equation.
The new features of the Gaussian kinetic model defined in
Sec. IV relative to previous models are(1) a velocity depen-
dent collision frequency,(2) two free parameters for a good
description of transport coefficients, and(3) applicability to
both elastic and inelastic collisions. For elastic collisions and
constant collision frequency it reduces to the ES kinetic
model [17,7], while for inelastic collisions and symmetric
Gaussian it reduces to the BMD model[13]. For elastic col-
lisions, constant collision frequency, and symmetric Gauss-
ian it becomes the usual BGK model[7]. It is also shown
here that the Gaussian model for constant collision frequency
can be “tuned” to represent well the more complicated Max-
well models. One motivation for the generalization of a ki-
netic model to include a velocity dependent collision fre-
quency is a more accurate description of the overpopulation
at large velocities for granular gases. The decrease of the
distribution function for large velocities in the simplest state
of HCS is algebraic for any model with a constant collision
frequency, including the Maxwell model. In contrast, the de-
cay found from the hard sphere Boltzmann equation is expo-
nential due to the velocity dependence of the loss term in the
collision operator. This qualitative difference may be impor-
tant for driven states as well. Although this asymptotic be-
havior occurs only for extremely large velocities it can have
an effect on the moments of the distribution function. In
addition it has been shown in Sec. VI that the hydrodynamic
modes and the Green-Kubo fluxes depend on the log of the

HCS distribution function, so this asymptotic behavior is
even more important. The Gaussian model with velocity de-
pendent collision frequency incorporates this behavior and in
addition gives a quite good quantitative representation of the
HCS distribution function for small velocities as well. This is
illustrated in Fig. 1 wherecGsad shows significant improve-
ment over the velocity independent case. As a consequence
the transport coefficientsksad andmsad are also significantly
improved due to their dependence oncGsad.

The second feature of a nonsymmetric Gaussian provides
an additional parameter beyond the collision frequency that
can be chosen to optimize the quality of all transport coeffi-
cients. Here they are chosen such that the shear viscosity is
accurate for both the constant collision frequency and the
velocity dependent collision frequency for all values of the
restitution coefficient. The other transport coefficients are ac-
curate in the elastic limit, including the correct Prandtl num-
ber for both cases. For inelastic collisions the agreement with
Boltzmann remains excellent for the velocity dependent col-
lision frequency case for alla. This is a primary improve-
ment of the Gaussian model. In contrast, the transport coef-
ficients from the Maxwell model are quite different from
those of the hard sphere Boltzmann equation, and the other
kinetic models using a symmetric Gaussian all give the
wrong Prandtl number.

An advantage of most kinetic models is their structural
simplicity. They can be solved exactly for many states as
functionals of a few moments of the distribution. These mo-
ments still obey complicated nonlinear integral equations but
the problem is simplified to the extent that exact results are
often possible for states with sufficient symmetry. An ex-
ample is given here for homogeneous states where the exact
solution is obtained in terms of the parameters of the Gauss-
ian gain term,Assd and Bijssd, which in turn are defined in
terms of the momentsMlssd. It is shown that an arbitrary
homogeneous initial condition evolves after a few collisions
to a universal scaling solution, the HCS. Such behavior is
expected also from the hard sphere Boltzmann equation but
its complexity has precluded a proof to date. It is useful also
to have the explicit representation of the HCS for other pur-
poses as well. Here it has been noted that the hydrodynamic
modes for weakly inhomogeneous states are described by
eigenfunctions of the linearized Boltzmann collision opera-
tor. These eigenfunctions are determined from the HCS and a
contrast with the corresponding eigenfunctions for elastic
collisions was made possible by the explicit results for the
HCS for the kinetic model. Significant differences are ob-
served between the cases of the velocity independent and
velocity dependent collision frequency, due to the qualitative
differences in the large velocity dependences of the HCS.
This is also related to the Hilbert space for formulating the
eigenvalue problem for the linearized kinetic equation. The
natural scalar product is an integration over the velocities
weighted by the HCS distribution function. Due to the alge-
braic decay at large velocities for the constant collision fre-
quency case(including the Maxwell model), polynomials of
high degree do not exist in this space[14]. This restriction
does not occur for the hard sphere Boltzmann equation or the
Gaussian model with velocity dependent collision frequency.
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It is of some interest to study any qualitative differences in
the spectrum of the linearized collision operator and any con-
sequences for the existence of hydrodynamics. The Gaussian
kinetic model provides a tractable context to address this
issue.

The most interesting states for experimental purposes are
quasi-steady-states for systems driven at the boundaries. For
states of high spatial symmetry the kinetic model again of-
fers the advantage of an exact solution as a functional of low
degree moments. An example is that of uniform shear flow
where an exact solution for the distribution function has been
obtained in the case of a symmetric Gaussian[35]. The result
applies even for large shear rates so the rheology of states far
from equilibrium can be studied directly. The Gaussian
model described here also can be solved exactly for uniform
shear flow and will be given elsewhere. Vibrated systems,
with and without gravity, have been studied on the basis of
the Boltzmann equation using Monte Carlo simulation meth-
ods leading to a number of important results bearing on ex-
periments(e.g., boundary layers[36], dependence of velocity
distribution on the distance from the driving wall[37], sym-
metry breaking[38]). The Gaussian kinetic model may be
simple enough for a complementary analytical study of such
problems.

In summary, the work here has extended earlier kinetic
models to bring closer correspondence with the Boltzmann
equation for the HCS and small spatial perturbations of that
state. The price for these improvements is an increased com-
plexity of the model, although this has not been an impedi-
ment for the simple states considered here. It remains to
demonstrate significant new results for more complex states,
not already addressed by the simpler existing models.
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APPENDIX A: MOTIVATION FOR GAUSSIAN MODEL

The Gaussian model results from an approximation to the
gain contribution to the Boltzmann collision operator, de-
noted bygsr ,V ,t u fd in Eq. (30). The specific choice of a
Gaussian can be interpreted as resulting from maximizing
the information entropyIfgg,

Ifgg =E dmsvdgsr ,V,tufd ln gsr ,V,tufd, dmsvd = dvnsvd,

sA1d

among the class of functions whose weighted moments of
degree 2 are specified:

E dmsvd1
1

v

1

2
mV22gsr ,V,tufd = 1 G1

G2

G3i j
2 . sA2d

The measure for the velocity integration has been chosen to
include the velocity dependence of the collision frequency.
Incorporating these constraints with Lagrange multipliers
and minimizingIfgg leads directly to the Gaussian form

gsr ,V,tufd = exps− l1 − l2 v − l3i jviv jd, sA3d

where the coefficientsla are determined in terms ofGa from
Eq. sA2d. Thus, if the only known or important exact prop-
erties of the gain term are the moments in Eq.sA2d then Eq.
sA3d is a “natural” choice for the model.

It may be useful to recall thatgsr ,V ,t u fd is exactly
Gaussian forf= Maxwellian at a=1. It has been verified
numerically that this property remains true to an excellent
approximation fora,1 as well, with only the parameters of
the Gaussian changing. This gives further support for the
choice(A3).

APPENDIX B: FORMAL SOLUTION FOR
HOMOGENEOUS STATES

The formal solution to the Gaussian model kinetic equa-
tion (49) is

f*sv* ,sd = e−fs1/2dz* s3+v* ·=v*d+n* sV* dgsf*sv* ,0d

+E
0

s

ds8e−fs1/2dz* s3+v* ·=v*d+n* sV* dgss−s8dn*sV*d

3g*sv* ,s8d. sB1d

The action of the exponential in Eq.sB1d can be determined
as follows. Define a functionXsv* ,sd by

Xsv* ,sd = e−fs1/2dz* s3+v* ·=v*d+n* sv* dgsXsv*d, sB2d

which then obeys the equation

S]s +
1

2
z*s3 + v* · =v*d + n*sV*dDX = 0. sB3d

Next introduce

Xsv* ,sd = e−s1/2dz*sv* ·=v*X̄sv* ,sd, sB4d

so thatX̄sv* ,sd obeys the equation

S]s +
3

2
z* + es1/2dz*sv* ·=v*n*sv*de−s1/2dz*sv* ·=v*DX̄ = 0.

sB5d

From the identity

es1/2dz*sv* ·=v*Fsv*de−s1/2dz*sv* ·=v* = Fses1/2dz*sv*d, sB6d

this equation becomes
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S]s +
3

2
z* + n*ses1/2dz*sv*dDX̄ = 0. sB7d

This can be integrated directly and inserted in Eq.sB4d to
give

Xsv* ,sd = e−s3/2dz*se−s1/2dz*sv* ·=v*expS−E
0

s

ds8n*ses1/2dz*s8v*dD
3Xsv*d

= e−s3/2dz*sexpS−E
0

s

ds8n*se−s1/2dz*s8v*dD
3Xse−s1/2dz*sv*d. sB8d

The formal solution to the kinetic equation becomes

f*sv* ,sd = e−s3/2dz*sKsv* ,sdf*se−s1/2dz*sv* ,0d

+E
0

s

ds8e−s3/2dz*s8Ksv* ,s8dn*se−sz* /2ds8v*d

3g*ses−z* /2ds8v* ,s− s8d, sB9d

Ksv* ,sd = expS−E
0

s

ds8n*se−s1/2dz*s8v*dD . sB10d

It is interesting to note that no use of the explicit form forg*

has been used. So, this result applies to the Boltzmann equa-
tion as well.

APPENDIX C: MOMENT CONDITIONS

The HCS for the Gaussian model is given by Eq.(56),

fsv*d =E
0

`

ds8e−s3/2dz*s8Ksv* ,s8dn*se−s1/2dz*s8v*d

3g*se−s1/2dz*s8v* ,`d. sC1d

This is restricted by the moment conditionss50d,

SM1
*

M3
* D =E dv*1 1

2

3
v*2 2n*sV*dfsv*d. sC2d

These conditions can be verified by direct integration,

SM1
*

M3
* D =E dv*1 1

2

3
v*2 2n*sV*dE

0

`

ds8e−s3/2dz*s8Ksv* ,s8d

3n*se−s1/2dz*s8v*dg*se−s1/2dz*s8v* ,`d

=E dv*1 1

2

3
v*2 2 1

v*3E
0

v*

dxx2n*sxd

3g*sx,`d
2

z* n*sV*dK̄sv* ,xd,

with the notation

K̄sv* ,xd ; expS−
2

z*E
x

v* dx8

x8
n*sx8dD .

Next eliminate 2n*sv*d /z* by noting it can be generated by

differentiatingK̄,

SM1
*

M3
* D = − 4pE

0

`

dv*1 1

2

3
v*2 2E0

v*

dxx2n*sxd

3g*sx,`d
dK̄sv* ,xd

dv*

= − 4pE
0

`

dxx2n*sxdg*sx,`d

3E
x

`

dv*1 1

2

3
v*2 2dK̄sv* ,xd

dv*

= 4pE
0

`

dxx2n*sxdg*sx,`d

351 1

2

3
x22 +E

x

`

dv*1 0

4

3
v* 2K̄sv* ,xd6

= S M1
*

M3
* − z* D + 4pE

0

`

dv*1 0

4

3
v* 2

3E
0

v*

dxx2n*sxdg*sx,`dK̄sv* ,xd, sC3d

where use has been made of Eq.s51d. The second term of
Eq. sC3d can be recognized as moments offsv*d to give the
desired result

SM1
*

M3
* D = S M1

*

M3
* − z* D +

z*

2
E dv*1 0

4

3
v*2 2fsv*d = SM1

*

M3
* D .

sC4d

The last equality follows from Eq.s7d in the form

S1

1
D =E dv*1 1

2

3
v*2 2fsv*d. sC5d

This confirms the consistency of moment conditionss50d
and s51d.

The two equations(C5) fix the values ofA* and B*−1 in
the Gaussian model(49). A convenient representation is
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3

2
=

E
0

`

dv*v*E
0

v*

dxx2n*sxde−B*−1x2
K̄sv* ,xd

E
0

`

dv*v*−1E
0

v*

dxx2n*sxde−B*−1x2
K̄sv* ,xd

,

or

0 =E
0

`

dv*Sv* −
3

2
v*−1DE

0

v*

dxx2n*sxde−B*−1x2
K̄sv* ,xd.

sC6d

This determinesB* . Next A* is obtained from

A*−1 =
8p

z* E
0

`

dv*v*−1E
0

v*

dxx2n*sxde−B*−1x2
K̄sv* ,xd.

sC7d

Finally, with A* and B*−1 known, the moments are deter-
mined from Eq.s51d,

S M1
*

M3
* − z* D =E dv*1 1

2

3
v*2 2n*sV*dA*e−B*−1v*2

. sC8d

APPENDIX D: LINEARIZED COLLISION OPERATOR

The collision operator for the Gaussian model is

J„r ,vufstd… ; − nsr ,V,tdffsr ,V,td − gsr ,V,tufdg. sD1d

The distribution function is expanded as

fsr ,V,td = f s0dsr ,V,td + f s1dsr ,V,td + ¯ , sD2d

gsr ,V,tufd = gsr ,V,tuf s0dd +E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

3f s1dsr ,V8,td + ¯ . sD3d

The linearized collision operator is therefore

Lf s1d = −E dv8UdJ„ur ,vufstd…
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

= nsr ,V,tdF f s1dsr ,V,td

−E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,tdG . sD4d

The second term of Eq.sD3d can be made more explicit by
recalling that the functional dependence ofgsr ,V ,t u fd oc-
curs only throughA andBij :

E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

= gsr ,V,tuf s0ddFE dv8Ud lnAsur ,tufd
dfsr ,v8,td

U
f=fs0d

f s1d

3sr ,V8,td − ViVj E dv8UdBij
−1sur ,tufd

dfsr ,v8,td
U

f=fs0d

3f s1dsr ,V8,tdG . sD5d

Using the definition ofBij in Eq. s39d gives

dBij
−1sr ,tufd

dfsr ,v8,td
= S− B−1sr ,tuf s0dd

dBsr ,tufd
dfsr ,v8,td

B−1sr ,tuf s0ddD
i j

= −
9

Bkk
2 S1

3

dBkksr ,tufd
dfsr ,v8,td

di j +
ysad
nm

DijsVdD .

sD6d

Then Eq.sD5d becomes

E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

= gsr ,V,tuf s0ddFE dv8Ud ln Asur ,tufd
dfsr ,v8,td

U
f=fs0d

f s1d

3sr ,V8,td + V2 3

Bkk
2 E dv8UdBkksur ,tufd

dfsr ,v8,td
U

f=fs0d
f s1d

3sr ,V8,td +
9ysad

nm2Bkk
2 DijsVd

3E dv8DijsV8df s1dsr ,V8,tdG . sD7d

The expansionsD2d leads to a corresponding expansion for
the moments

1M1

M 2

M3
2 =E dv1

1

v

1

2
msv − ud22

3nsr ,V,tdff s0dsr ,V,td + f s1dsr ,V,td + ¯ g

= 1M1
s0d

M 2
s0d

M3
s0d 2 + 1M1

s1d

M 2
s1d

M3
s1d 2 + ¯ . sD8d

The coefficients Asr ,t u f s0dd and Bijsr ,t u f0d
=fBkksr ,t u f0d /3gdi j =Bdi j are determined fromMl

s0d just as is
done in Appendix C. The remaining part of the moment con-
ditions are
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1M1
s1d

M 2
s1d

M3
s1d 2 =E dv1

1

v

1

2
mV22nsr ,V,td

3E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td.

sD9d

The terms on the right side of Eq.sD7d can be identified as
an expansion in terms of polynomials of degree 2 in the
velocity. To do so, first define a Hilbert space with scalar
product

sa,bd =E dvngs0da*b, gs0d = gsuf s0dd. sD10d

Next, define the set of functionshcsj,

1c1

c2

c3
2 =1

Î 1

N1
1

Î 3

N2
V

Î 1

N3
SV2 −

N2

N1
D2 , sD11d

with normalization constants

N1 = s1,1d, N2 = sVi,Vid = s1,V2d,

N3 = XSV2 −
N2

N1
D,SV2 −

N2

N1
DC = s1,V4d −

N2
2

N1
. sD12d

These functions form an orthonormal set

scs,cmd = dsm. sD13d

EquationsD7d may now be written in the form

E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

= gsr ,V,tuf s0ddFescasVd +
ysad

nm2B2DijsVd

3E dv8Dij f
s1dG . sD14d

The coefficientses can be determined by taking the scalar
product of this equation withcm:

em =E dvncmE dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

=E dvncmf s1d. sD15d

The second equality follows from Eq.sD9d and allows these
terms to be represented as a projection onto the subspace
spanned byhcsj:

nsr ,V,td E dv8Udgsur ,V,tufd
dfsr ,v8,td

U
f=fs0d

f s1dsr ,V8,td

= Pnf s1d +
y

nm2B2ngs0dDij E dv8Dij f
s1d, sD16d

whereP is a projection operator,

PX = ngs0dcsE dvcsX. sD17d

The linearized collision operator of Eq.(D4) now takes
the simple form

Lf s1d = s1 −Pdnf s1d −
y

nm2B2ngs0dDijsVd E dv8Dij f
s1d.

sD18d

The first term represents the fact thatL has a null subspace
due to the moment conditions

E dv1
1

V

1

2
mV22Lf s1d = 0. sD19d

This is the usual BGK-like operator with a single, infinitely
degenerate point in the spectrum for all functions of the or-
thogonal subspace. The second term is a projection onto a
specific function in the orthogonal subspace and is the new
effect of the asymmetric Gaussian approximation, or the

nonzero value ofB̃ij .
Finally, noting that

E dvDijDijg
s0d =

5

2
nm2B2, sD20d

allows the linearized operator to be written as

Lf s1d = s1 −Pdnf s1d −
5

2
y

ngs0dDijsVd E dv8Dij f
s1d

E dvDijDijg
s0d

.

sD21d
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